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Abstract. This contribution presents a new approach to optimize the
efficiency of differential side channel cryptanalysis against block ciphers
by advanced stochastic methods. We approximate the real leakage func-
tion within a suitable vector subspace. Under appropriate conditions
profiling requires only one test key. For the key extraction we present a
‘minimum principle’ that solely uses deterministic data dependencies and
the ‘maximum likelihood principle’ that additionally incorporates the
characterization of the noise revealed during profiling. The theoretical
predictions are accompanied and confirmed by experiments. We demon-
strate that the adaptation of probability densities is clearly advantageous
regarding the correlation method, especially, if multiple leakage signals
at different times can be jointly evaluated. Though our efficiency at key
extraction is limited by template attacks profiling is much more efficient
which is highly relevant if the designer of a cryptosystem is bounded by
the number of measurements in the profiling step.
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1 Introduction

Side channel cryptanalysis exploits physical information that is leaked during
the computation of a cryptographic device. The most powerful leakage con-
sists of instantaneous physical signals which are direct responses on the internal
processing. These instantaneous observables can be obtained by measuring the
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power dissipation or the electromagnetic emanation of the cryptographic de-
vice as a function of time. Power analysis, which was first introduced in [9] and
electromagnetic analysis ([8]) are based on the dependency of the side channel
information on the value of intermediate data, which is in turn caused by the
physical implementation.

Advanced stochastic methods have turned out to be efficient tools to optimize
pure timing and combined timing and power attacks. Using such methods, the
efficiency of some known attacks could be increased considerably (up to a factor
of fifty), some attacks could be generalized and new attacks were conceived ([12–
14]). The understanding of the source of an attack and its true risk potential is
important for a designer of a cryptographic system for implementing effective
and reliable countermeasures that prevent also privileged attacks.

This contribution gives a thorough stochastic approach to optimize the effi-
ciency of differential side channel analysis applied against block ciphers. In our
work, the quantification of side channel leakage is done in a chosen vector sub-
space. Under suitable conditions it requires only measurements under one test
key, and even this test key need not be known. Our approach aims to achieve
the efficiency of the template attacks in the key extraction phase but requires
far less measurements in the profiling phase, e.g., in case of AES we guess that
savings in the order of up to one hundred are feasible. This is surely interest-
ing for designers of cryptosystems in order to assess the susceptibility of their
implementations towards attacks. The mathematical model is supported by an
experimental analysis of an AES implementation on an 8-bit microcontroller.
Further, we show how our model can be generalized to comprehend both mask-
ing countermeasures as well as the usage of multiple physical channels.

1.1 Related Work

Differential side channel cryptanalysis identifies the correct key value by sta-
tistical methods for hypothesis testing. Differential Power Analysis (DPA) ([9])
turned out to be a very powerful technique against unknown implementations.
The single measurements are partitioned accordingly to the result of a selection
function that depends both on known data and on key hypotheses. [9] suggested
to just use the difference of means for the two sets of single measurements. Im-
proved statistics are the student’s T-Test and the correlation method which are
given in [2]. Additional guidelines for testing the susceptibility of an implemen-
tation are presented in [3].

Other contributions assume that the adversary is more powerful, e.g, that
the adversary is able to load key data into the cryptographic device. Profiling
as a preparation step of power analysis was first described by [6]. Probably
the most sophisticated strategy is a template based attack ([4]) which aims to
optimize Simple Power Analysis (SPA) and requires a precise characterization
of the noise. Moreover, physical information can be captured simultaneously by
different measurement set-ups, e.g., by measuring the EM emanation and the
power consumption in parallel ([1]).



2 The Mathematical Model

In this section we introduce a new mathematical model for differential side chan-
nel attacks against block ciphers. We investigate this model (Subsect. 2.1) and
exploit these insights to derive optimal decision strategies (Subsects. 2.2 and 2.3).
The success probability (or equivalently, the risk potential) and the efficiency of
our approach are considered.

We assume that the adversary (e.g., the designer) measures physical observ-
ables at time t in order to guess a subkey k ∈ {0, 1}s. The letter x ∈ {0, 1}p

denotes a known part of the plaintext or the ciphertext, respectively. We view a
measurement at time t as a realization of the random variable

It(x, k) = ht(x, k) + Rt. (1)

The first summand ht(x, k) quantifies the deterministic part of the measurement
as far it depends on x and k. The term Rt denotes a random variable that
does not depend on x and k. Without loss of generality we may assume that
E(Rt) = 0 since otherwise we could replace ht(x, k) and Rt by ht(x, k) + E(Rt)
and Rt − E(Rt), respectively. We point out that (1) does not cover masking
techniques. A generalization of (1) and the main results in Subsects. 2.2 and 2.3,
however, is straight-forward (cf. Subsect. 2.4). From now on we assume that the
plaintext is known by the adversary but our results can be directly transferred
to ‘known-ciphertext’ attacks.

Example 1. In Sect. 3 an AES implementation targeting one S-Box is analyzed.
Then t is an instant, e.g., during the first round and x, k ∈ {0, 1}8.

2.1 Fundamental Theorems

The central goal of Subsect. 2.2 is to estimate the distribution of the random
vector (It1 (x, k), . . . , Itm

(x, k)) where t1 < · · · < tm are different instants that
are part of the side-channel measurements We work out important facts that
will be used in the next subsection.

Definition 1. As usual ‖ · ‖ : IRn → IR denotes the Euclidean norm, that is
‖(z1, z2, ..., zn)‖2 =

∑n

j=1 z2
j . In this work, terms b

T and AT stand for the trans-

pose of the vector b and the matrix A, respectively. The term f̃ denotes an
estimator of a value f . Random variables are denoted with capital letters while
their realizations, i.e. values assumed by these random variables, are denoted
with the respective small letters.

Mathematical model. The random variables Rt, X and K (resp. Rt, X1, X2,

. . . , XN , and K) are defined over the same probability space (W,W , P ), where
W is a sample space, W a σ-algebra consisting of subsets of W and P a proba-
bility measure on W . More precisely, Rt : W → IR; X, X1, . . . , XN : W → {0, 1}p

(random plaintext parts) and K : W → {0, 1}s (random subkey). By assump-
tion, the random variables Rt, X and K (resp. Rt, X1, X2, . . . , XN , and K) are
independent. For the sake of readability in (2), for instance, we suppress the
subscript X,Rt,K=k as this should be obvious.



Theorem 1. Let k ∈ {0, 1}s denote the correct subkey. Then the following as-
sertions are valid:
(i) The minimum

min
h′ : {0,1}p×{0,1}s→IR

E
(
(It(X, k) − h′(X, k))

2
)

(2)

is attained at h′ = ht. If Prob(X = x) > 0 for all x ∈ {0, 1}p (e.g., if X is
equidistributed on {0, 1}p) the minimum is exclusively attained for h′ = ht.
(ii) Let t1 < t2 · · · < tm. Then the minimum

min
h′

1,...,h′

m : {0,1}p×{0,1}s→IR
E

(
‖ (It1(X, k) − h′

1(X, k), . . . , Itm
(X, k) − h′

m(X, k)) ‖2
)

(3)
is attained at (h′

1, . . . , h
′
m) = (ht1 , . . . , htm

).
(iii) For each x ∈ {0, 1}p we have ht(x, k) = EX=x (It(X, k)).

Proof. Clearly, It(X, k)−h′(X, k) = ∆h(X, k)+Rt with ∆h = ht−h′. Squaring
both sides and evaluating their expectations yields

E
(
(It(X, k) − h′(X, k))

2
)

= E
(
∆h(X, k)2

)
+ E

(
R2

t

)
≥ E

(
R2

t

)

since E(Rt) = 0, and since ∆ht(X, k) and Rt are independent by assumption. If
Prob(X = x) > 0 for all x ∈ {0, 1}p then E(∆h(X, k)2) > 0 for h′ 6= ht which
completes the proof of (i). Similarly,

E
(
‖ (It1(X, k) − h′

1(X, k), . . . , Itm
(X, k) − h′

m(X, k)) ‖2
)

=

m∑

j=1

E
((

∆h(X, k) + Rtj

)2
)
≥

m∑

j=1

E
(
R2

tj

)
,

which verifies (ii), while (iii) follows immediately from (1).

Note that Theorem 1 (ii) says that we may determine the unknown functions
ht1 , . . . , htm

separately although we are interested in the joint distribution of
(It1(X, k), . . . , Itm

(X, k)). Principally, the 2p+s unknown function values ht(x, k)
could be estimated separately using Theorem 1(iii). Though satisfactory from a
theoretical point of view this approach is impractical.

Considering the concrete implementation a designer (resp., an adversary)
should be able to determine a (small) subset Ft ⊂ F := {h′ : {0, 1}p ×{0, 1}s →
IR} that either contains the searched function ht itself or at least a function h∗

t

that is sufficiently ‘close’ (to be made precise below) to ht. For simplicity we
restrict our attention to the case Ft = Fu;t, where this set of functions is a real
vector subspace that is spanned by u known functions gjt : {0, 1}p×{0, 1}s → IR.
More precisely,

Fu;t := {h′ : {0, 1}p × {0, 1}s → IR |

u−1∑

j=0

β′
jgjt with β′

j ∈ IR} (4)



We may assume that the functions gjt are linearly independent so that Fu;t

is isomorphic to IRu. In particular, the minimum on the right-hand side of (6)
always exists. Theorem 2 will turn out to be crucial for the following. In the
following h∗

t will always denote an element in Fu;t where (6) and (7) attain their
minimum.

Theorem 2. As in Theorem 1 let k ∈ {0, 1}s denote the correct subkey.
(i) For each h′ ∈ Fu;t we have

E
(
(It(X, k) − h′(X, k))

2
)
− E

(
(It(X, k) − ht(X, k))

2
)

(5)

= EX

(
(ht(X, k) − h′(X, k))

2
)
≥ 0

where EX(·) denotes the expectation with respect to the random variable X, i.e.

the right-hand term equals
∑

x∈{0,1}p Prob(X = x) (ht(x, k) − h′(x, k))
2
.

(ii) EX

(
(ht(X, k) − h∗

t (X, k))
2
)

= min
h′∈Fu;t

EX

(
(ht(X, k) − h′(X, k))

2
)

(6)

implies

E
(
(It(X, k) − h∗

t (X, k))
2
)

= min
h′∈Fu;t

E
(
(It(X, k) − h′(X, k))

2
)

. (7)

(iii) Let t1 < t2 · · · < tm. If h′
j ∈ Ftj

for all j ≤ m then

E
(
‖ (It1(X, k) − h′

1(X, k), . . . , Itm
(X, k) − h′

m(X, k)) ‖2
)

(8)

= E
(
‖ (It1(X, k) − ht1(X, k), . . . , Itm

(X, k) − htm
(X, k)) ‖2

)
+

m∑

j=1

EX

((
htj

(X, k) − h′
j(X, k)

)2
)

.

Proof. Assertion (i) can be shown similarly as Theorem 1(i) while (ii) and (iii)
are immediate consequences from (i).

Remark 1. (i) If X is equidistributed on {0, 1}p and if we interpret ht(·, k) and
h′(·, k) as 2p-dimensional vectors the L2-distance

√
EX ((ht(X, k) − h′(X, k))2)

between ht(·, k) and h′
t(·, k) equals (apart from a constant) the Euclidean dis-

tance, and h∗
t (·, k) is the orthogonal projection of ht(·, k) onto Fu;t.

(ii) It is natural to select the function h∗
t ∈ Fu;t that is ‘closest’ to ht, i.e.

that minimizes EX((ht(X, k)− h′(X ; k))2) on Fu;t. Theorem 2 says that h∗
t can

alternatively be characterized by another mimimum property (7), and that the

approximators h̃∗
t1

, . . . , h̃∗
tm

may be determined separately. Theorem 3 below pro-
vides a concrete formula to estimate the unknown coefficients β∗

0,t, . . . , β
∗
u−1,t of

h∗
t with respect to the base g0,t, . . . , gu−1,t.

(iii) An appropriate choice of the functions g0,t, . . . , gu−1,t, i.e. of Fu;t, is essen-
tial for the success rate of the attack. Of course, the vector subspace Fu;t should
have a small L2-distance to the unknown function ht. An appropriate choice may



require some insight in the qualitative behaviour of the side channel observables.
Clearly, Fu1,t ⊆ Fu2,t implies that h∗

u2,t is at least as good h∗
u1,t but the number

of measurements in the profiling phase increases with the dimension of Fu;t.

Definition 2. Let V denote an arbitrary set and let φ : {0, 1}p × {0, 1}s → V

be a mapping for which the images φ ({0, 1}p × k′) ⊆ V are equal for all subkeys
k′ ∈ {0, 1}s. We say that the function ht has Property (EIS) (‘equal images
under different subkeys’) if ht = ht ◦ φ for a suitable mapping ht : V → IR, i.e.
ht(x, k) can be expressed as a function of φ(x, k).

Example 2. p = s, φ(x, k) := x � k where � denotes any group operation on
{0, 1}p =: V (e.g. ‘⊕’).

Lemma 1. Assume that ht(·, ·) has property (EIS). Then for any pair (x′, k′) ∈
{0, 1}p × {0, 1}s there exists an element x′′ ∈ {0, 1}p with ht(x

′, k′) = ht(x
′′, k).

Proof. By assumption, φ ({0, 1}p, k) = φ ({0, 1}p, k′). Consequently, there exists
an x′′ ∈ {0, 1}p with φ(x′′, k) = φ(x′, k′) and hence ht(x

′′, k) = ht(x
′, k′).

If considerations on the fundamental properties of the physical observables
suggest that ht(·, ·) meets (at least approximately) the invariance property (EIS)
it is reasonable to select functions gjt that allow representations of the form
gjt = gjt ◦ φ with gjt : V → IR. Then

h∗
t = h

∗

t ◦ φ with h
∗

t (y) :=
u−1∑

j=0

βjtgjt(y) (9)

(see Sect. 3.1). As an important consequence it is fully sufficient to determine

h̃∗
t (·, k) ∈ Fu;t f or any single subkey k ∈ {0, 1}s, which is an enourmous advan-

tage over a pure template attack which requires 2p+s templates. An advanced
template attack that exploits Lemma 1 requires 2p templates. If possible, we
recommend to select plaintexts from a uniform distribution so that deviations
|ht(x, k) − h∗

t (x, k)| count equally to the L2-distance for all (x, k). Whether the
invariance assumption (EIS) is really justified for ht(·, ·) may be checked by a
second profiling with another subkey.

2.2 The Profiling Phase

In this subsection we explain how to determine approximators of ht(·, ·), or more
precisely, of h∗

t (·, ·) and the distribution of the noise vector (Rt1 , . . . , Rtm
). We in-

terpret the ‘relevant parts’ x1, x2, . . . xN1
(i.e. input for the function ht) of known

plaintexts as realization of independent random variables X1, X2, . . . , XN1
that

are distributed as X . The Law of Large Numbers implies

1

N1

N1∑

j=1

(it(xj , k) − h′(xj , k))
2 N1→∞

−→ E
(
(It(X, k) − h′(X, k))

2
)

(10)

with probability 1 for any h′ : {0, 1}p × {0, 1}s → IR. Here it(xj , k) denotes the
measurement at time t for curve j which has the plaintext part xj ∈ {0, 1}p.



Theorem 3. (Estimation of ht) Again, let k denote the correct subkey. For any

h′ :=
∑u−1

j=0 β′
jgjt ∈ Fu;t we have

N1∑

j=1

(it(xj , k) − h′(xj , k))
2

= ‖it − Ab‖2 (11)

where A = (aij)1≤i≤N1;0≤j<u is a real-valued (N1 × u)-matrix, b ∈ IRu and
i ∈ IRN1 . More precisely, aij := gj(xi, k), b := (β′

0, . . . , β
′
u−1)

T and it :=
(it(x1, k), . . . , it(xN1

, k))T . Any solution b
∗ = (b∗0, . . . , b

∗
u−1)

T of

AT Ab = AT
it (12)

minimizes the right-hand side of (11). If the (u×u)-matrix AT A is regular then

b
∗ = (AT A)−1AT

it. (13)

Due to (10) we use the approximator h̃∗
t (x, k) =

∑u−1
j=0 β∗

jtgjt(x, k) with β∗
jt := b∗j .

Proof. Equation (11) is obvious whereas (12) is well-known (cf. [7], Subsect.
6.2.1 with X = A, Y = it and B = b; least square estimator) whereas the final
assertions are obvious.

Remark 2. We already know that if ht has the property (EIS) the profiling
need only be done for one subkey k. We point out that the adversary need
not even know this subkey. In fact, for a given measurement vector it the
adversary applies Theorem 3 to all possible subkeys k′ ∈ {0, 1}s and com-
putes the respective coefficient vectors b

∗′

. If k′ 6= k Theorem 3 indeed de-
termines an optimal function h̃∗′

t ∈ F ′
u,t which is spanned by the functions

g′jt(x, k) := gjt(x, k) + (gjt(x, k′) − gjt(x, k)) in place of the gjt while the mea-
surement vector it implicitly depends on the (unknown) correct subkey k. Hence
it is very likely that F ′

u,t has a larger L2-distance to ht than Fu;t and, conse-

quently ‖it − Ab
∗‖2 < ‖it − Ab

∗′

‖2 for all instances t. The adversary just adds
these squared norms for each admissible subkey over several instants t, and
decides for that subkey for which this sum is minimal (see Sect. 3.1 for an ex-
perimental verification). In fact, the determination of k is a by-product of the
profiling phase which costs no additional measurements. At least principally, this
observation could also be used for a direct attack without profiling, which yet
requires a sufficient number of measurements.

Definition 3. Rt denotes the random vector (Rt1 , . . . , Rtm
) in the following.

Similarly, we use the abbreviations I t(x, k), it(xj , k), ht(x, k) and h
∗
t (x, k),

where t stands for (t1, . . . , tm).

After having determined the approximators h̃∗
t1

, . . . , h̃∗
tm

the adversary uses a
second set that consists of N2 measurement curves to estimate the distribution of
the m-dimensional random vector Rt = It(X, k) − ht(X, k). We point out that
in general the components Rt1 , . . . , Rtm

of Rt are not independent, and unlike



the functions htj
they hence cannot be guessed separately. In the most general

case the adversary interpolates the N2 vectors {it(xj , k) − h̃
∗

t (xj , k) | j ≤ N2}
by a smooth probability density f0. In the experimental part of this paper we
assume that the random vector Rt is jointly normally distributed with covariance
matrix C = (cij)1≤i,j≤m, i.e. cij := E(Rti

Rtj
) − E(Rti

)E(Rtj
) = E(Rti

Rtj
)

since E(Rti
) = E(Rtj

) = 0. If the covariance matrix C is regular the random
vector Rt has the m-dimensional density f0 := fC with

fC : IRm → IR fC(z) =
1√

(2π)m det C
e−

1
2
z
TC−1

z (14)

(cf. [7], for instance). Note that the adversary merely has to estimate the com-
ponents cij for i ≤ j since the covariance matrix is symmetric.

2.3 The Key Extraction Phase

By our mathematical model It(x, k) − ht(x, k) = Rt for all (x, k) ∈ {0, 1}p ×
{0, 1}s, and E(Rtj

) = 0 for each j ≤ m. If Rt has the density f0 : Rm →
[0,∞) (e.g., f0 = fC for a suitable covariance matrix C), and if k◦ denotes the
(unknown) correct subkey of the attacked device then for each x ∈ {0, 1}p we
have

It(x, k◦) has density fk◦ with fk◦(z) := f0(z − ht(x, k◦)). (15)

After having observed N3 measurement curves (with known parts x1, . . . , xN3
)

the adversary evaluates the product

α(x1, . . . , xN3
; k) :=

N3∏

j=1

f̃k (it(xj , k
◦)) =

N3∏

j=1

f̃0

(
it(xj , k

◦) − h̃
∗
t (xj , k)

)
(16)

for all subkeys k ∈ {0, 1}s where f̃0 denotes the approximation of the exact
density f0 that the adversary has determined in the second step of the profiling
phase. Note that it(xj , k

◦) are observables that depend implicitly on the correct
subkey k◦. Note further that

f̃k (z) = f̃0

(
z − h̃

∗
t (x, k′)

)
= f̃k◦

(
z + (ht(x, k◦) − h̃

∗
t (x, k′))

)
. (17)

If the profiling phase has been successful ht(x, k◦) − h̃
∗
t (x, k′) ≈ h̃

∗
t (x, k◦) −

h̃
∗
t (x, k′) ≈ ht(x, k◦)−ht(x, k′) and f̃0 ≈ f0. The adversary decides for k′ if the

term α(x1, . . . , xN3
; k′) is maximal (maximum likelihood principle).

We point out that the correct subkey k◦ also fulfils a minimum property:

min
k′∈{0,1}s

E
(
‖It(X, k◦) − ht(X, k′)‖2

)
= E

(
‖It(X, k◦) − ht(X, k◦)‖2

)
. (18)

The situation is similar to Theorem 1 where the correct function ht(X, ·) attains
a minimum for the given (correct) subkey. Equation (18) can be verified as
Theorem 1. In fact, the left-hand terms in (18) equal

∑m

j=1(EX (htj
(x, k◦) −



htj
(x, k))2) + E(R2

tj
)). As an alternative to the maximum likelihood approach

described above the adversary may decide for that subkey k′ ∈ {0, 1}s that
minimizes

1

N3

N3∑

j=1

‖it(xj , k
◦) − h̃

∗

t (xj , k
′)‖2 (19)

This key extraction is less efficient than the maximum likelihood approach as
it (explicitly) only considers the deterministic part ht. On the other hand it
saves the second part of the profiling phase which may be costly for large m (cf.
Sect. 3).

To perform the overall attack the adversary subsequently applies (16) or
(19) to obtain the ranking of the candidates for all subkeys. Assuming that one
plaintext-ciphertext pair is known, ‘candidate vectors’ consisting of probable
subkey candidates can be checked.

Template attacks aim at ht itself whereas our approach estimates h∗
t . Hence

the key extraction efficiency of the template attacks gives an upper bound for our
approach. However, if the vector subspace Fu;t has been chosen appropriately
this efficiency gap should be small, especially due to the presence of noise.

We point out that the designer may estimate the risk potential against tem-
plate attacks by a stochastic simulation. If Fu;t was chosen suitably the f̃k′

should be close to the true densities fk′ and in particular of similar shape. In the
simulation the designer yet assumes that the estimated densities f̃k′ were exact,
which corresponds to a template attack with large sample size.

If the attacked device processes several subkeys simultaneously, the efficiency
of the overall attack can be further increased by applying a two-step stochastic
sieving process, viewing the key extraction process as a sequence of statistical
decision problems. The interested reader is referred to [14], Sect. 4 (see also [13],
Sect. 7) where such a sieving algorithm was introduced for a timing attack on a
weak AES implementation. This sieving process is applicable to hardware-based
cryptographic implementations since all subkeys are processed in parallel, but it
is not detailed in this contribution.

2.4 Generalizations of Our Model

Our model in equation (1) is not appropriate if the device under test applies algo-
rithmic masking mechanisms that use (pseudo-)random numbers. However, (1)
allows a straight-forward generalization. We merely have to replace ht : {0, 1}p×
{0, 1}s → IR by hb,t : {0, 1}p×{0, 1}v ×{0, 1}s → IR where the second argument
denotes the random number that is used for masking. Analogously to (3) the
minimum

min
h′

b,t
: {0,1}p×{0,1}v×{0,1}s→IRm

E
(
‖It(X, Y, k) − h

′
b,t(X, Y, k)‖2

)
(20)

is attained at hb,t where Y denotes a random variable (independent of X and
Rt) that models the random numbers used for masking. Under the reasonable
assumption that the designer has access to these random numbers the profiling



works analogously as in Subsect. 2.2, yielding a density f̃b;0 : IRm → IR. In Defi-
nition 2 the function φ is simply replaced by φb : {0, 1}p×{0, 1}v ×{0, 1}s → V .
Of course, in the key extraction phase knowledge of the masking random num-
bers y1, . . . , yN3

cannot be assumed. The designer, resp. the adversary, hence
decides for the subkey k′ that maximizes the product

αb(x1, . . . , xN3
; k) :=

N3∏

j=1

∑

y′∈{0,1}v

Prob(yj = y′)f̃0

(
it(xj , yj , k

◦) − h̃
∗
b,t(xj , y

′, k)
)
(21)

among all k ∈ {0, 1}s (cf. (16)). The mixture of densities on the right-hand side
expresses the fact that the true density also depends on the unknown random
numbers y1, . . . , yN3

. If these random numbers are unbiased and independent
then Prob(Yj = y′) = 2−v for all j ≤ N3 and y′ ∈ {0, 1}v. Due to lack of space
we skip a formal proof of (21). The generalized model can be used for high-order
differential side-channel attacks. One possible goal is to quantify the efficiency
of particular masking techniques.

Reference [1] considers the case where signals from several side-channels can
be measured simultaneously. Our model can also be generalized to this situ-
ation in a natural way: We just have to replace the scalar function ht(x, k),
or more generally hb,t(x, y, k), by the q-dimensional vector h[q],b,t(x, y, k) :=
(h1,b,t(x, y, k), . . . , hq,b,t(x, y, k)) where hn,b,t(x, y, k) quantifies the determinis-
tic part of the nth side-channel. Similarly, instead of It and Rt we consider
q-dimensional random vectors I[q],b,t and R[q],b,t for each instant. The correct
vector-valued function h[q],b,t minimizes

E




m∑

j=1

q∑

n=1

(In,b,tj
(X, Y, k) − h′

n,b,tj
(X, Y, k))2



 (22)

among all h
′
[q],b,t : {0, 1}p × {0, 1}v × {0, 1}s → (IRq)

m
.

3 Experimental Analysis

An AES implementation on an 8-bit ATM163 microcontroller was developed
for the experimental evaluation of the efficiency achieved by our new decision
strategies. The AES was implemented in Assembly language and does not include
any countermeasures. The side channel information was gained by measuring
the instantaneous current consumption in the ground line. Four measurement
series were recorded using 2000 single measurements with a different fixed AES
key k = {k1, ..., k16} in each series. The random input data x = {x1, ..., x16}
were chosen independently from a uniform distribution. It is xl ∈ {0, 1}8 and
kl ∈ {0, 1}8 with l ∈ {1, ..., 16}.

The following list summarizes the steps in the profiling (Steps 1 to 4) and
key extraction phase (Steps 5 to 7). Note that for the minimum principle Step
4 is skipped (N2 = 0) and Step 6 is applied at key extraction. Instead of Step 6
the maximum likelihood principle uses Step 7.



1. Perform N1+N2 measurements using a static key k and known data x1, x2, . . ..
2. With regards to the attacked device select for each instant t the functions

gi,t(·, ·) that span the vector subspace Fu;t.
3. Choose a selection function that combines kl and xl and apply Theorem 3 to

a subset of N1 measurements to obtain the estimators h̃∗
t (·, ·). (Optionally:

Repeat Steps 1 to 3 for another test key k2 and compare the results in order
to verify the assumption (EIS).)

4. Choose instants t1 < · · · < tm. Use the complementary subset of N2 measure-
ments to obtain the density f̃0 : IRm → IR. (maximum likelihood principle
only)

5. Perform N3 measurements using the target device with the unknown static
key k

◦ and known data x1, x2, . . ..
6. Choose instants t1 < · · · < tm and apply (18) and (19) to guess the correct

subkey k◦
l of the attacked device. (minimum principle only)

7. Apply (16) to guess the correct subkey k◦
l of the attacked device. (maximum

likelihood principle only)

For comparison, even when exploiting (EIS) template attacks require 28 ·N2

single measurements for an AES implementation.

3.1 The Profiling Phase: Estimation of h
∗

t

For profiling we chose the selection function S(φ(x, k)) for the AES S-Box S

with φ(x, k) = x ⊕ k where we suppress the byte-number indicating index l

of plaintext and subkey. For the vector subspaces we tested different choices,
that are evaluated regarding their efficiency in Section 3.3. The chosen vector
subspace is applied to the overall time frame, i.e., we do not use a combination
of several vector subspaces at different instants.

In this Section, profiling is presented in more detail for the nine-dimensional
bit-wise coefficient model, referenced as vector subspace F9 = F9;t for all in-
stants t. According to equation (9) with u = 9, Theorem 3 and Lemma 1 the
deterministic side channel contribution ht(φ(x, k)) is approximated by

h̃∗
t (φ(x, k)) = b0t +

8∑

i=1

bit · gi(φ(x, k)) (23)

wherein gi(φ(x, k)) ∈ {0, 1} is the i-th bit of S(φ(x, k)) . The coefficient b0t gives
the expectation value of the non-data dependent signal part and the coefficients
bit with i 6= 0 are the bitwise data dependent signal portions. Though the inter-
nal processing of the implementation is deterministic, the measurands are not:
noise is an important contribution to the physical signal. The coefficients bit

are revealed by solving an overdetermined system of N1 linear equations (see
Theorem 3).

The experimental results show that the resulting coefficients bit differ in am-
plitude, so that the use of the Hamming weight model can not be of high quality.
The coefficients bit were computed on all four measurement series independently.
As it can be exemplary seen in Fig. 1 the deviations of coefficients revealed at



the four series are relatively small. As the four series were done with different
AES keys, these experimental results confirm the assumptions of Lemma 1 say-
ing that it is justified to perform the profiling of h∗

t (·, k) : {0, 1}p → IR for only
one subkey k ∈ {0, 1}s.
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Fig. 1. Coefficient b8,t for all four measurement series as a function of time t. The
signals of bit no. 8 (least significant bit) turned out to be the most significant ones. It
is N1 = 2000.

Profiling without Knowing the Key In case that the subkey k is unknown
the estimation of h∗

t may be performed for all possible key values k′ ∈ {0, 1}8 (cf.
Remark 2 in Sect. 2.2). It was experimentally confirmed that the term ‖(it(x, k)−

h̃∗′

t (x, k′))‖2 indeed was minimal for the correct subkey k. By analyzing the
relevant time frame of 6500 instants the difference between the first and the
second candidate was 1.9 times larger than the difference between the second and
the last candidate. However, we note that the usage of the correlation method
[2] to determine k needs less computational efforts.

3.2 The Profiling Phase: Estimation of the Noise

The characterization of the noise was done independently of the estimation of
the coefficients bit. Concretely, as preparation step for the maximum likelihood
principle we used N1 = 1000 for the extraction of the coefficients bit. The com-
putations of the covariance matrix C = (cij)1≤i,j≤m for sets of m points were
done with N2 = 1000 and N2 = 5000. For the case N2 = 5000 we combined
three measurement series, except for the one that is used for the key extraction
later on.

3.3 The Key Extraction Phase: Minimum Principle

For the minimum principle given by equations (18) and (19) the estimation
of h∗

t is needed, but not the estimation of the noise contribution. If not stated
otherwise, only one measurement series served for the profiling step (N1 = 2000)
and the key extraction is applied at another series.



First, a suitable choice of m points in time t has to be found1. We used
‖b‖ = ‖(b1,t, b2,t, ..., b8,t)‖ as the measure for our decision. Concretely, we chose
the threshold τ = 30 in the following selections for F9.

S1: By selecting all instants with ‖b‖ ≥ τ we obtained seven different signals2

and the number of instants was m = 147. For each signal, most instants are
in series.

S2: At each signal with ‖b‖ ≥ τ we took the time yielding the maximum value
of ‖b‖. Here, we obtained 7 different instants.

S3: We chose only one point in time yielding the maximum value of ‖b‖.
S4: We chose points that fulfill ‖b‖ ≥ τ > vart with vart := empV ar(it(xj , k) :

j ≤ N1) denoting the empirical variance. Here, we obtained m = 100 differ-
ent positions in time, but only at five different signals.

S5: We chose points that fulfill ‖b‖ ≥ τ > vart yielding the same result as
selection S4 and we add additionally all points in time that fulfill ‖b‖ > τ at
the remaining two signals. Altogether, we obtained m = 120.

S6: For each of the seven signals with ‖b‖ ≥ τ we chose three points by visual
inspection, so that the instants chosen are spread over one signal. For the
selection S6 it is m = 21.

The minimum value of equation (19) is computed for all subkeys k′ ∈ {0, 1}8.
In this contribution we assess the efficiency by the average number of single
measurements needed to achieve a certain success rate using a given number N3

of single measurements taken from the same measurement set. The success rate
(SR) was tested by ten thousand random choices of N3 single measurements
from one series. It can be seen in Table 1 that 10 single measurements yield
already a success rate of about 75 % and beyond 30 single measurements the
success rate can be above 99.9 %. The best results were gained at the selections
S5 and S6.

N3 SR for S1 SR for S2 SR for S3 SR for S4 SR for S5 SR for S6

2 5.57 % 5.64 % 1.06 % 3.31 % 6.35 % 6.36 %

3 12.06 % 11.14 % 1.65 % 7.49 % 13.21 % 13.57 %

5 29.14 % 28.47 % 3.00 % 21.43 % 32.81 % 33.40 %

7 50.39 % 48.20 % 4.39 % 39.41 % 54.23 % 53.88 %

10 75.29 % 73.45 % 8.29 % 65.45 % 78.97 % 78.69 %

15 94.27 % 92.92 % 14.68 % 89.22 % 95.77 % 95.15 %

20 98.57 % 98.31 % 22.26 % 97.59 % 99.17 % 98.82 %

30 99.92 % 99.89 % 39.34 % 99.85 % 99.97 % 99.95 %

Table 1. Success Rate (SR) that the correct subkey value is the best candidate as
result of (18) and (19) by using N3 randomly chosen measurements for the analysis at
the set of instants S1 to S6. The vector space used was F9.

1 Note, that we do not consider the covariance of the noise at the chosen points in this
approach for key extraction.

2 We assign all instants that occur during one instruction cycle to one signal.



Choice of Vector Subspaces Different vector spaces are evaluated regarding
their efficiency. The choice of high-dimensional vector spaces, e.g, by including
all terms of gi(φ(x, k))gi′ (φ(x, k)) (i 6= i′) (see (9) and (23)) did not lead to great
improvements. We observed only weak contributions of second-order coefficients
that even vanish at many combinations. We present results for

F2 = F2;t for all t: the Hamming weight model (u = 2),
F5 = F5;t for all t: a set of four bit-wise coefficients (u = 5) (these are the most

significant bit-wise coefficients of F9),
F10 = F10;t for all t: a set of the bit-wise coefficient model and one carefully

chosen second-order coefficient (u = 10), and
F16 = F16;t for all t: the bit-wise coefficient model and seven consecutive second

order coefficients (u = 16).

For Table 2 the time instants are chosen in the same way as described for F9

with S1 at the beginning of Section 3.3 and the thresholds τ are indicated.
High-dimensional vector spaces require more measurement curves than low-
dimensional ones: There is a trade-off between the number of measurements
used during profiling and the dimension of a suitable vector space. In our case,
F9 (see Table 1 and 2) seems to be a good choice though there is some space
left for optimization, e.g., by using N1 = 5000, N3 = 10, and τ = 10 the success
rate of F10 was 80.19% and superseded the corresponding result for F9 (77.31%).
Another optimization would be to select only contributing functions gi,t(·, ·) for
the chosen vector subspace at the relevant instants.

N3 SR for F2 (τ = 1) SR for F5 (τ = 8) SR for F10 (τ = 30) SR for F16 (τ = 70)

2 2.59 % 4.22 % 5.18 % 4.81 %

3 4.75 % 9.03 % 11.27 % 9.73 %

5 11.63 % 21.97 % 27.28 % 23.69 %

7 21.66 % 37.61 % 47.66 % 41.04 %

10 37.77 % 62.22 % 72.94 % 65.05 %

15 62.46 % 86.36 % 93.57 % 88.69 %

20 80.36 % 95.71 % 98.41 % 96.17 %

30 96.23 % 99.74 % 99.88 % 99.81 %

Table 2. Success Rate (SR) that the correct key value is the best candidate as result
of (18) and (19) by using N3 randomly chosen measurements in different vector spaces.

Comparison with the Correlation Method Herein, the efficiency gain of
the minimum principle is compared with the correlation method of [2] on base of
the same pool of measurement data. The correlation method checks for the max-
imum correlation peak obtained and it does not evaluate joined sets of multiple
instants.

The success rate obtained with the correlation method is illustrated in Ta-
ble 3 and can be compared with selection S3 in Table 1 which was restricted
to the same instant. In comparison, the correlation method yields worse success
rates than the minimum principle. By taking, e.g., N3 = 10 the minimum prin-
ciple yields an improvement by a factor of 3.0 regarding the Hamming weight



prediction and by a factor of 7.1 regarding the best result of one bit prediction
of the correlation method. Even, if the estimated coefficients bit of the minimum
principle are known an improvement by a factor of 1.8 is achieved. (Note that
the relative factor depends on N3.) As the minimum principle uses the adap-
tation of probability densities it is advantageous if compared to the correlation
method that exploits the linear relationship. Moreover, we point out that the
success rate of the minimum principle increases greatly, if multiple signals are
jointly evaluated.

N3 SR (Hamming weight) SR (lsb-Bit) SR (estimated bit)

5 0.82 % 0.51 % 1.12 %

7 1.31 % 0.84 % 2.37 %

10 2.74 % 1.17 % 4.60 %

15 6.04 % 2.11 % 9.33 %

20 9.70 % 3.55 % 16.67 %

30 19.67 % 6.54 % 31.99 %

50 41.27 % 16.53 % 62.84 %

100 82.85 % 45.22 % 96.13 %

Table 3. Success Rate (SR) obtained for the correlation method using the 8-bit Ham-
ming weight and the least significant bit (lsb-Bit) as the selection function. The last
column shows the SR if the weighted estimated coefficients bit using F9 are used for
the correlation.

3.4 The Key Extraction Phase: Maximum Likelihood Principle

For the maximum likelihood principle as described in Section 2.3 and equation
(16) both the estimation of h∗

t and the estimation of the noise is needed. The
profiling was done as described in the corresponding parts of Section 3.1 and
3.2.

The m-dimensional random vector Z = (It1(X, k)−h̃∗
t1

(X, k), . . . , Itm
(X, k)−

h̃∗
tm

(X, k)) is assumed to be jointly normally distributed with covariance matrix
C. The strategy is to decide for the key hypothesis k′ that maximizes equation
(16) for the multivariate Gaussian distribution using N3 measurements which is

equivalent to find the minimum of the expression
∑N3

i=1 z
T

i
C−1

zi.

The analysis was done by using the vector subspace F9 with the selections S2

and S6 defined at the beginning of Section 3.3. Note, that for the single instant
selection S3 the maximum likelihood principle reduces to the minimum principle.

Again, the success rate (SR) was computed using ten thousand random
choices of one measurement series. As shown in Table 4, based on N2 = 1000
a significant improvement was achieved for the selection S2 regarding Table 1,
but not for the selection S6. This decrease by using the maximum likelihood
principle if N3 < 15 and N2 = 1000 for S6 can be explained by our limited pro-
filing process: the estimation error at the profiling of a 7 × 7 covariance matrix
is significantly lower than the error committed for a 21× 21 matrix on the base
of N2 = 1000. This assessment is confirmed by the corresponding columns in



Table 4 for N2 = 5000. Both the success rates for S2 and S6 were further en-
hanced. As result, a high value for N2 can be crucial for the maximum likelihood
principle, especially if high dimensions are used for the covariance matrix.

The maximum likelihood method needs typically twice the number of mea-
surements during profiling. Therefore, even though key extraction is less efficient
under certain circumstances the ‘minimum principle’ might be preferred. Given
15 measurements, it can be read out from Table 4 that the maximum probability
to find the correct key value is 99.25 %. The resulting probability to decide for
the correct AES key is (0.9925)16 = 0.8865.

The number N3 of measurements can be further reduced if it is tolerated
that the correct key value is ‘only’ among the first best candidates as result of
differential side channel cryptanalyis and a plaintext-ciphertext pair is available.
E.g., if the correct key value is among the first four subkey candidates with high
probability, up to 232 tries remain to localize the correct key value. In case of S2

and N3 = 10 the corresponding success rate that the correct subkey is at least at
the fourth position of the subkey ranking is 97.58 %, if N2 = 1000, and 99.42 %,
if N2 = 5000.

N3 SR for S2 SR for S6 SR for S2 (N2=5000) SR for S6 (N2=5000)

2 6.06 % 4.73 % 7.39 % 6.55 %

3 13.93 % 10.45 % 17.06 % 16.00 %

5 36.30 % 28.04 % 43.70 % 41.43 %

7 61.12 % 51.48 % 70.51 % 68.34 %

10 84.33 % 78.26 % 91.08 % 90.17 %

15 97.97 % 95.86 % 99.14 % 99.25 %

20 99.85 % 99.49 % 99.97 % 99.96 %

30 99.99 % >99.99 % >99.99% >99.99 %

Table 4. Success Rate (SR) that the correct key value is the best candidate as result
of equation (16) by using N3 randomly chosen single measurements for the analysis.
All results are based on F9 with N1 = 1000. If not explicitly stated it is N2 = 1000.

4 Conclusion

This contribution proposes a new mathematical approach to optimize the ef-
ficiency of differential side channel cryptanalysis by stochastic methods. The
quantification of side channel leakage is done in a chosen vector space and does
not even (necessarily) require knowledge of one test key. For the key extraction
we present a ‘minimum principle’ that solely uses deterministic data dependen-
cies and the ‘maximum likelihood principle’ that additionally incorporates the
characterization of the noise revealed during profiling. We have shown how our
model can be generalized to comprehend both masking countermeasures as well
as the usage of multiple physical channels. The theoretical predictions derived
from our mathematical model are accompanied and confirmed by experiments.
We conclude that the adaptation of probability densities by our methods is
clearly advantageous regarding the correlation method, especially, if multiple



leakage signals at different instants can be jointly evaluated. Though our effi-
ciency at key extraction is limited by template attacks profiling is much more
efficient.
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