
Template Attacks

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi

IBM Watson Research Center,
P.O. Box 704

Yorktown Heights, NY 10598
{schari,jrrao,rohatgi}@us.ibm.com

Abstract. We present template attacks, the strongest form of side chan-
nel attack possible in an information theoretic sense. These attacks can
break implementations and countermeasures whose security is dependent
on the assumption that an adversary cannot obtain more than one or a
limited number of side channel samples. They require that an adversary
has access to an identical experimental device that he can program to
his choosing. The success of these attacks in such constraining situations
is due manner in which noise within each sample is handled. In contrast
to previous approaches which viewed noise as a hindrance that had to be
reduced or eliminated, our approach focuses on precisely modeling noise,
and using this to fully extract information present in a single sample.
We describe in detail how an implementation of RC4, not amenable to
techniques such as SPA and DPA, can easily be broken using template at-
tacks with a single sample. Other applications include attacks on certain
DES implementations which use DPA–resistant hardware and certain
SSL accelerators which can be attacked by monitoring electromagnetic
emanations from an RSA operation even from distances of fifteen feet.

1 Introduction

In the past few years, side channel attacks [13,12] have shown to be extremely
effective as a practical means for attacking implementations of cryptographic al-
gorithms. Adversaries can obtain sensitive information from side channels such
as timing of operations[13], power consumption [12], electromagnetic emanations
[19,9,20] etc. In constrained devices such as chip–cards, straightforward imple-
mentations of cryptographic algorithms can be broken with minimal work.

Since Paul Kocher’s original paper [12], a number of devastating attacks,
such as Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
have been reported on a wide variety of cryptographic implementations [15,18,
6,11,17,8,3,4,10,16,7,5,21]. In SPA, keying information is easily extracted from a
single sample due to leakage from the execution of key dependent code and/or
the use of instructions which leak substantial information in the side channel over
the noise. When the leakage relative to noise is much less, statistical techniques
such as DPA are applicable. DPA relies on a statistical analysis of a large number
of samples where the same keying material is used to operate on different data.
A large number of samples is used to reduce noise by averaging.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 13–28, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø¯P) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

14 S. Chari, J.R. Rao, and P. Rohatgi

In this paper, we show that these attacks are not optimal as they do not take
advantage of all information available in each side channel sample. Consequently,
some implementations believed to be immune to side channel attacks simply
because the adversary is limited to one or at most a few compromising samples,
can in reality be broken by harnessing all available information.

Consider an implementation of the RC4 stream cipher. While there are recent
reports of cryptanalytic results highlighting minor statistical weakness, there are
no major statistical biases to be easily exploited by side–channel attacks. To our
knowledge, no successful side channel attack on a reasonable RC4 implementa-
tion has been reported1. Initializing the 256-byte internal state of RC4 using
the secret key is simple enough to be implemented in a key independent man-
ner. While implementations of this will certainly leak some information about
the key, the individual steps do not leak enough information. Thus, simple side
channel attacks such as SPA are not possible. After initialization, the rapidly
evolving internal state of the stream cipher, independent of adversarial action
(due to the absence of any external inputs), offers innate defense against statis-
tical attacks such as DPA. One can at most hope to obtain a single sample of
the side channel leakage during the key initialization phase of RC4. Figure 1 is
based on side channel samples from the RC4 key initialization phase: the upper
trace is the difference between two single power samples when the keys are the
same, the lower trace when they are different. Contrary to expectation, the first
case shows larger differences. This ambiguity exists even when one looks at dif-
ferences of averages of upto five invocations (as shown in Figure 3 in Section 3).
Clear and consistent differences emerge only when one considers averages of sev-
eral tens of samples. Therefore, it would appear that such a carefully coded RC4
implementation cannot be attacked using only one available sample.

Consider a smart card which has a fast2 hardware DES engine. These have
become very popular especially because they have been evaluated and shown to
be highly resistant to side channel attacks. In conjunction with protocols limiting
adversaries to only few DES invocations with the card’s secret key, it would
appear that this is immune to side channel attacks. The third case we consider
is where an adversary is able to position sensitive (and bulky) electromagnetic
(EM) eavesdropping equipment in the proximity of a server with a commercial
RSA accelerator inside. In this environment, due to a risk of detection, it is likely
that only a few samples can be obtained.

In all these cases, the adversary has to work with far fewer signals than is
believed is necessary for side channel attacks based on known techniques. The
template attacks introduced in this paper can break all of these implementations.
In fact, as we will see, the template attack extracts all possible information avail-
able in each sample and is hence the strongest form of side channel attack possible
in an information theoretic sense given the few samples that are available.

A key requirement for the template attack is that the adversary has an iden-
tical experimental device which can be programmed. While such an assumption

1 IEEE 802.11 uses RC4 in a mode which makes implementations vulnerable to DPA.
2 Typically, such engines perform the entire DES in a few cycles.

Template Attacks 15

0 500 1000 1500 2000 2500 3000
−80

−60

−40

−20

0

20

40

0 500 1000 1500 2000 2500 3000
−30

−20

−10

0

10

20

30

40

Fig. 1. Differences of side channel samples: upper figure is for the same key while the
lower is for two different keys

is limiting, it holds in many cases and has been used in other side channel attacks
[8,18] before. The template attack derives its power from using the experimental
device to derive a precise multivariate characterization of the noise. In sharp
contrast, prior approaches focussed on eliminating noise by averaging. We argue
that, especially for cryptographic algorithms implemented in CMOS devices, the
use of such a characterization is an extremely powerful tool to classify even a
single sample. The situation is analogous to the manner in which very weak
signals are extracted in signal communications. Even though the received signal
strength is very weak, it can be extracted by a receiver who has a very good
characterization of the signal and the ambient noise.

We refer to the precise, detailed models of the signal and noise as the template
of the computation. The concept of a template is based on Signal Detection and
Estimation Theory and in particular, the use of information theoretic techniques
such as likelihood ratios for hypothesis testing. Although other techniques such
as DPA, can also be viewed as coarse approximations of likelihood ratios, the
use of multivariate noise statistics is key to extracting the maximum information
from a single sample. Empirically, we have observed that in several situations,
univariate statistics are not sufficient and yield poor results.

The template attack works by a process of iterative classification. At each
step, we unroll one more segment of the sample which uses more bits of the
unknown key. Correspondingly, larger templates are used to prune the space of
possible hypotheses for the values of key bits, while controlling error probability.

16 S. Chari, J.R. Rao, and P. Rohatgi

While minor differences in the keys can possibly confuse a classifier, this attack
is effective on cryptographic algorithms because the natural diffusion properties
of cryptographic algorithms actually aid in eliminating precisely such mistakes.

The paper is organized as follow: Section 2 introduces the theory behind tem-
plate attacks. Section 3 describes the application of template attacks to extract
keys from an implementation of RC4 using a single sample. Section 4 describes
two other cases where template attacks are feasible. In Section 5, we describe
the implications of template attacks and discuss potential countermeasures.

2 Theory

In this section, using Signal Detection and Estimation Theory we derive the
template attack and describe some heuristics to make the attacks practical.
Essentially, we have a device performing one of K possible operation sequences,
{O1, . . . , OK}: for example, these could be to execute the same code for different
values of key bits. An adversary who can sample the side channel during this
operation wishes to identify which of the operations is being executed or to
significantly reduce the set of possible hypotheses for the operation.

In signal processing, it is customary to model the observed sample as a com-
bination of an intrinsic signal generated by the operation and noise which is
either intrinsically generated or ambient. Whereas the signal component is the
same for repeated invocations of the operation, the noise is best modeled as a
random sample drawn from a noise probability distribution that depends on the
operating and other ambient conditions. It is well known[22] that the optimal ap-
proach for the adversary, who is trying to find the right hypothesis given a single
sample S, is to use the maximum likelihood approach: The best guess is to pick
the operation such that, the probability of the observed noise in S is maximized.
Computing this probability requires the adversary to model both the intrinsic
signal and the noise probability distribution for each operation accurately.

Template attacks meld this basic principle with details of the cryptographic
operation being attacked. The adversary uses an experimental device, identical
to the device under test, to identify a small section of the sample S depend-
ing only on a few unknown key bits. With experimentation, he builds templates
corresponding to each possible value of the unknown key bits. The template con-
sist of the mean signal and noise probability distributions. He then uses these
templates to classify that portion of S and limit the choices for the key bits to
a small set. This is then repeated with a longer prefix of S involving more key
bits. We will retain only a small number of possibilities for the portion of the key
considered thus far. Thus template attacks essentially use an extend-and-prune
strategy directed by the single sample S to be attacked: we use increasingly
longer prefixes of S and the corresponding templates to prune the space of pos-
sible key prefixes. The success critically depends on how effectively the pruning
strategy reduces the combinatorial explosion in the extension process.

Template attacks are particularly effective on implementations of crypto-
graphic algorithms on CMOS devices due to their contamination and diffusion

Template Attacks 17

properties. Contamination refers to key dependent leakages which can observed
over multiple cycles in a section of computation. In CMOS devices, direct ma-
nipulation of the key bits makes them part of the device state and these state
leakages can persist for several cycles. Additionally, other variables affected by
the key, such as key dependent table indices and values, cause further contam-
ination at other cycles. The extent of contamination controls the success of the
pruning of the fresh key bits introduced in the expansion phase. It is to be
expected that if two keys are almost the same, that even with the effects of
contamination, pruning at this stage, may not be able to eliminate one of them.
Diffusion is the well-known cryptographic property wherein small differences in
key bits are increasingly magnified in subsequent portions of the computation.
Even if certain candidates for key bits were not eliminated due to contamination
effects, diffusion will ensure that closely spaced keys will be pruned rapidly.

The implementation of an algorithm on a particular device inherently places
theoretical bounds on the success of the template attack. The best any adversary
can do to approach this theoretical bound is to have extremely good and accurate
characterizations of the noise. While one get elaborately sophisticated with such
characterizations, in practice approximations such as a multivariate Gaussian
model for the noise distributions yields very good results.

2.1 The Multivariate Gaussian Model Approach

The steps in developing a Gaussian model are as follows:

1. Collect a large number L (typically one thousand) of samples on the exper-
imental device for each of the K operations, {O1, . . . , OK}.

2. Compute the average signal M1, . . . , MK for each of the operations.
3. Compute pairwise differences between the average signals M1, . . . , MK to

identify and select only points P1, . . . , PN , at which large differences show
up. The Gaussian model applies to these N points. This optional step signif-
icantly reduces the processing overhead with only a small loss of accuracy.

4. For each operation Oi, the N–dimensional noise vector for sample T is Ni(T)
= (T [P1] − Mi[P1], . . . , T [PN] − Mi[PN]). Compute, the noise covariance
matrix between all pairs of components of the noise vectors for operation Oi

using the noise vectors Nis for all the L samples. The entries of the covariance
matrix ΣNi are defined as:

ΣNi [u, v] = cov(Ni(Pu), Ni(Pv))

Using this we compute the templates (Mi, ΣNi
) for each of the K operations. The

signal for operation Oi is Mi and the noise probability distribution is given by the
N–dimensional multivariate Gaussian distribution pNi(·) where the probability
of observing a noise vector n is:

pNi(n) =
1

√
(2π)N |ΣNi

| exp(−1
2
nT Σ−1

Ni
n), n∈ RN (1)

where |ΣNi | denotes the determinant of ΣNi and Σ−1
Ni

is its inverse.

18 S. Chari, J.R. Rao, and P. Rohatgi

In this model, the optimal technique to classify a sample S, is as follows: for
each hypothesized operation Oi, compute the probability of observing S if indeed
it originated from Oi. This probability is given by first computing the noise n in
S using the mean signal Mi in the template and then computing the probability
of observing n using the expression for the noise probability distribution and
the computed ΣNi

from the template. If the noise was actually Gaussian, then
the approach of selecting the Oi with the highest probability is optimal.The
probability of making errors in such a classification is also computable. If we
use this approach to distinguish two operations O1 and O2 with the same noise
characterization ΣN , the error probability is given by:

Fact 1 [22]For equally likely binary hypotheses, the error probability of error
of maximum likelihood test is

Pε =
1
2

erfc
(∆

2
√

2

)
(2)

where ∆2 = (M1 − M2)T Σ−1
N (M1 − M2) and erfc(x) = 1 − erf(x).

To implement the pruning process of the template attack, we deal with mul-
tiple hypotheses and bound the probability of classification errors by judiciously
selecting a small subset of possible operations as most likely candidates.

2.2 The Pruning Process

In the extend-and-prune paradigm of the template attack, each extension results
in several hypotheses about the operation being performed. For the attack to be
tractable, the pruning process has to reduce the set of possible hypotheses to a
very small number while ensuring with high probability that the correct hypoth-
esis is not discarded. To achieve this we ensure that the cumulative probability of
the hypothesis not retained is within the desired error bound. While this can be
done exactly given the precise noise characterizations, several heuristic methods
are easier to implement and give good results.

One approach that works well is to scale the probabilities so that the noise
probabilities under all of the hypotheses add up to one. We then discard those
hypotheses with the lowest scaled probabilities till the cumulative probability of
error due to the discarded hypotheses reaches the desired error bound.

Another heuristic that is easy to implement is to fix a constant factor c and
only retain those hypotheses in the pruned set whose noise vector probabili-
ties are within this constant fraction c of the highest noise probability: that is,
if Pmax is the maximum noise probability, we keep all hypotheses whose noise
probability is at least Pmax

c . We refer to this pruning process as the ball approach.
The intuition for this heuristic is that if the noise characterization is approxi-
mately the same for all hypotheses then the logarithm of the noise probability
for a hypothesis is a measure of the distance between the received signal and
that hypothesis. The misclassification error is an inverse exponential function of
the distance between hypotheses. The heuristic is to create a ball centered at

Template Attacks 19

the received sample whose radius is dmin + log(c), where dmin is the shortest
distance between the sample and the nearest hypothesis. We then retain only
those hypotheses that fall into this ball. Under the assumption of approximately
similar noise characterizations, the worst case probability of error can be shown
to be bounded by O(∞√

c) [22]. In practice, the error is much better. In subsequent
sections, we will illustrate how this theory can be applied to a number of case
studies including an RC4 implementation.

3 Case Study: RC4

We describe a template attack on an implementation of RC4. RC4 is a stream
cipher operating on a 256-byte state table. The state table is used to generate a
pseudo-random stream of bytes that is then XOR’ed with the plaintext to give
the ciphertext. It is a popular choice in a number of products and standards.
RC4 uses a variable key length (from 1 to 256 key bytes) to update the 256-byte
state table (initially fixed) using the pseudo code below:

index1 = index2 = 0;
for (counter = 0; counter < 256; counter++) {
index2 = (key[index1] + state[counter] + index2) % 256;
swap_byte(&state[counter], &state[index2]);
index1 = (index1 + 1) % key_data_len;

}

A portion of the corresponding side channel sample, in this case the power
consumption, is shown in Figure 2. The repeated structure observed is exactly
five successive iterations of the loop. As described in Figure 1, two keys cannot
be distinguished on the basis of a single sample. In fact, this remains true if one
were to consider the averages of five samples as illustrated in Figure 3. However,
significant and widespread differences become apparent when examining averages
of several dozen samples (see Figure 4).

A well-designed system using RC4 is unlikely to permit an attacker to re-
peatedly obtain samples of identical state initialization computations3. Thus the
real challenge is to break this implementation using a single sample. The figures
clearly show that traditional attacks like SPA will not work and DPA is clearly
not an option since we can not obtain more than a single sample.

RC4 is, however, an ideal candidate for template attacks. It is evident from
inspecting the code snippet above, that the key byte used in each iteration
causes substantial contamination. The loading of the key byte, the computation
of index2 and the use of index2 in swapping the bytes of the state table all con-
taminate the side channel at different cycles. The extent of this contamination
is easily visible as significant and widespread once averages of a large number
of samples are taken. Further, the use of index2 and the state in subsequent
3 Note that in devices implementing the 802.11 standard the key initialization is done

repeatedly with a fixed secret key and a variable part.

20 S. Chari, J.R. Rao, and P. Rohatgi

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
4

−1000

−800

−600

−400

−200

0

200

Fig. 2. Power sample during first 5 iterations of RC4 state initialization loop.

0 500 1000 1500 2000 2500 3000
−100

−50

0

50

100

0 500 1000 1500 2000 2500 3000
−60

−40

−20

0

20

40

Fig. 3. Differences of averages of 5 side channel samples: upper figure is for the same
key while the lower is for two different keys

Template Attacks 21

0 500 1000 1500 2000 2500 3000
−15

−10

−5

0

5

10

15

0 500 1000 1500 2000 2500 3000
−30

−20

−10

0

10

20

30

Fig. 4. Differences of averages of 50 side channel samples: upper figure is for the same
key while the lower is for two different keys

iterations, and the fact, that RC4 is a well-designed stream cipher, quickly prop-
agates small key differences to cause diffusion. Thus, one expects that templates
corresponding to different choices of key bytes are very different and can be used
to efficiently and effectively classify a single sample.

3.1 Template Attack on RC4

Inspecting the averaged RC4 side channel samples using several different keys,
we identified 42 points in the side channel sample for each iteration of the loop for
classification purposes. Our first attempt used statistical measures that treated
these 42 points independently, i.e, we only looked at means and standard devi-
ations of the samples at each of the points. Although encouraging, the results
have high classification errors (as much as 35%) for pairs of keys with few bit
differences. Some empirical classification results of samples with five different
keys using this approach are shown in Fig 5. When key bits are very different,
even this simplistic approach gives us 100% success rate. However, in general,
this approach is unsuitable for an extend-and-prune attack due to high errors. In
the worst case, a large number of keys close to the actual key would be retained.
Empirically, we have observed that this could be of the order of a few tens of
keys. This is because even if keys have the same Hamming weight, the state
table addressing part distinguishes keys with different higher order bits. We use
the approach described in Section 2 to launch an attack based on multivariate

22 S. Chari, J.R. Rao, and P. Rohatgi

Key Byte 1111 1110 1110 1110 1101 1110 1011 1110 0001 0000
1111 1110 0.86 0.04 0.07 0.03 0.00
1110 1110 0.06 0.65 0.10 0.20 0.00
1101 1110 0.08 0.16 0.68 0.09 0.00
1011 1110 0.10 0.11 0.08 0.71 0.00
0001 0000 0.00 0.00 0.00 0.00 1.00

Fig. 5. Classification Probability of 5 competing hypotheses using univariate statistics.
Entry (i,j) is probability of classifying samples with key i as one with key j.

statistics with the Gaussian noise. For our experiment, we used 10 choices for
the first key byte, as shown in Fig. 6. They are carefully chosen to be very
close and yielded poor results with the univariate statistics. For each key byte,
we computed the mean of 2000 samples of the side channel. We used the same
42 points of interest as in the univariate experiment. The templates consisted
of the means and the noise covariance at these points. To obtain statistics on
how well this approach would work, we used the templates to classify tens of
thousands drawn using one of the 10 choices as the first key byte. Figs. 6 and
7 summarize the results of the classification experiments for this set of 10 key
choices. Since the values were carefully chosen to reflect the worst case, these
results can be extrapolated to the case of 256 different values of the key byte.
Fig. 8 is an extrapolation of our results for the case of 256 different templates by
making pessimistic assumptions about the number of “close” keys. In practice
the actual results should be much better.

Our first classification heuristic was to retain only the most likely hypoth-
esis i.e. with highest likelihood probability. Even with such a drastic pruning
approach, average classification success probability was 99.3% with these 10 hy-
potheses and worst–case probability was 98.1%. Detailed results are described
in column 1 of the Fig. 6. We can get reasonable results even if we use this
extensive pruning strategy in each iteration of the extend-and-prune approach.
Extrapolating, as shown in Fig. 8 we expect average error probability of the
closest hypothesis approach to be about 5−6% when we consider all 256 possible
values, since we pessimistically expect around 50 − 60 keys to be “close” to any
key. Bounding the error probability over many iterations by the sum of error is
in each iteration we note that when the number of key bytes is small this can be
used to extract all key bytes. For example, we can do better than 50% for about
8 bytes of key material.

With a little more effort, much better results can be obtained by using the
ball approach to pruning as shown in columns 2, 3 and 4 of Fig. 6 showing
success probability of retaining the correct hypothesis for balls with different
values of ball size. Average success probability has improved and is better than
99.8% and the worst–case probability is 99.5%, for this set of samples. As shown
in Fig. 7 the average number of hypotheses that we retain is still close to 1 for
balls of size e6 and e12. Again, using an estimate of about 50− 60 close keys, we
can extrapolate these results as done in Fig. 8. For example, choosing the ball
size e6, with good probability, at the end of one iteration we expect to retain at

Template Attacks 23

Key Byte Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1111 1110 98.62 99.46 99.88 99.94
1110 1110 98.34 99.82 99.88 99.88
1101 1110 99.16 100.00 100.00 100.00
1011 1110 98.14 99.52 99.82 100.00
0111 1110 99.58 99.76 99.89 99.94
1111 1101 99.70 99.94 99.94 99.94
1111 1011 99.64 99.82 99.82 99.89
1111 0111 100.00 100.00 100.00 100.00
1110 1101 99.76 99.82 99.88 99.88
1110 1011 99.94 100.00 100.00 100.00

Average 99.29 99.81 99.91 99.95

Fig. 6. Percentage of samples for which the correct hypothesis is retained under dif-
ferent ball sizes with 10 competing hypotheses

most 2 hypotheses, yet we are guaranteed to retain the correct hypothesis with
probability at least 98.67%. Using this approach independently in each iteration,
we can correctly classify keys of size n bytes with expected probability around
(100 − 1.33n)% and the number of remaining hypotheses would grow no more
than (1.5)k, which is substantially than the 28k (the entropy of the key). The
next subsection describes experiments where we use larger templates comprising
multiple iterations to get better pruning.

Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1 1.041 1.158 1.842

Fig. 7. Expected number of hypotheses retained under different ball sizes for 10 com-
peting hypothesis.

Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

Success Prob. 95.02 98.67 99.37 99.65
Retained Hypotheses 1 1.29 2.11 6.89

Fig. 8. Extrapolated results for 256 competing hypotheses.

Iteration. Instead of using the above attack independently on subsequent por-
tions of the sample which use the next key byte, it is advantageous to consider
the basic attack on the whole prefix of the sample including previous iterations.
In our RC4 implementation, we now use 84 points of interest in the sample
spread over two loop iterations to prune possible candidates for the first two key
bytes. After pruning hypotheses for the first byte (as described earlier), we ex-
tend extend each remaining hypothesis by all 256 possible values for the second

24 S. Chari, J.R. Rao, and P. Rohatgi

key byte. 84–point templates are created for this set of possibilities. Using these
larger templates, we classify the sample and retain only those hypotheses for the
first two bytes which remain in the ball around the sample.

Key Byte Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1101 1110 1111 1110 99.16 99.58 99.70 99.94
1101 1110 1110 1110 98.10 99.53 99.88 99.94
1101 1110 1101 1110 99.46 99.88 99.94 100.00
1101 1110 1011 1110 98.80 99.64 99.89 100.00
1101 1110 0111 1110 99.33 99.70 99.88 99.94
1101 1110 1111 1101 99.88 99.94 99.94 99.94
1101 1110 1111 1011 99.03 99.58 99.70 100.00
1101 1110 1111 0111 99.94 100.00 100.00 100.00
1101 1110 1110 1101 99.82 99.82 99.88 99.88
1101 1110 1110 1011 99.94 100.00 100.00 100.00
1011 1110 1111 1110 96.81 99.05 99.65 100.00
1011 1110 1110 1110 99.76 99.88 99.88 99.94
1011 1110 1101 1110 98.57 99.82 100.00 100.00
1011 1110 1011 1110 97.87 99.76 100.00 100.00
1011 1110 0111 1110 98.25 99.28 99.52 99.82

Average 98.98 99.70 99.86 99.96

Fig. 9. Percentage of samples for which the correct hypothesis is retained for 2 itera-
tions and 15 competing hypotheses

Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1 1.04 1.141 1.524

Fig. 10. Expected number of hypotheses retained under different ball sizes for 15 com-
peting hypotheses.

To verify that this is better than using just 42 points of the second iteration,
we performed the following experiment: We considered 15 possible combinations
of the first and second key bytes. There were two possibilities for the first key
byte which roughly simulates what we expect after the template attack on the
first iteration. The classification results for different ball sizes are given in Figs.
9 and 10. To compare these results to the earlier case, we must scale the results
from the tables for 10 hypotheses. Since there are 14 wrong hypothesis instead
of 9 before comparison each figure from the earlier tables must be scaled by a
factor of 14/9. This is indeed the case for the error probability of not retaining
the correct hypothesis for ball sizes of 1,e6 and e12. The error probability is better
for ball size of e24 when we use longer templates. More importantly, note that
the average number of hypotheses retained is substantially better uniformly for
each and every ball size. Thus, we retain fewer number of candidates by using a
longer template. Empirically, we have observed that with a longer template, with

Template Attacks 25

extremely high probability, all of the hypotheses remaining have the correct first
key byte. After 2 iterations, we could only find 1 sample amongst 16000 where
a hypothesis with the wrong first key byte was retained.

4 Other Case Studies

We briefly describe two other examples where template attacks can be used. The
first example is a smart card with fast DES hardware. Use of such hardware is
currently very popular, since they highly resistant to power attacks. The only
exposure for such engines is the loading of the key bytes from EEPROM which
usually leaks the hamming weight. However, implementors also have to worry
about Differential Fault Attacks [2,1], and a card that we looked at addressed this
problem using a checksum on key bytes, verified before the key was loaded in the
DES engine. The checksum was calculated accessing key bytes in circular order
starting from a random offset. This can be easily fixed using signal processing.
Fig. 11 shows an averaged signal depicting the checksum computation loop in
more detailfollowed by the enabling of the DES engine (the region with large
current consumption). In the checksum calculation, the key bytes are loaded
from EEPROM, placed in RAM and are then used as operands in the checksum
computation, thus creating a large contamination. For example, Figure 12 shows
that even key bytes with the same hamming weight can be distinguished by
taking averages of a few samples. Such types of signals are prime candidates for
a template attack.

0 5 10 15

x 10
4

−1000

−800

−600

−400

−200

0

200

Fig. 11. Average signal showing details of checksum calculation for 8 key bytes.

26 S. Chari, J.R. Rao, and P. Rohatgi

0 1000 2000 3000 4000 5000 6000 7000
−100

−50

0

50

0 1000 2000 3000 4000 5000 6000 7000
−60

−40

−20

0

20

40

60

Fig. 12. Differences in average signals: lower figure is for same key and upper figure is
for different keys but with same hamming weight.

The second example is a EM signal we collected from a distance of 15 feet
away from an SSL accelerator inside a closed server. We programmed the SSL
accelerator to do a 2048 bit exponentiation with a single-nibble exponent. The
fact that the exponent leaks from this computation follows from Figure13 which
shows the signal differences between exponentiation with two different nibble ex-
ponents B and D after taking averages of few signals and some signal processing.
Thus template attacks are very feasible for this case as well. In this example,
other attacks such as MESD [18] can be possible as well, if one can collect a
large number of EM samples.

5 Implications and Countermeasures

In principle, the template attack described is the strongest side channel attack
possible from an information theoretic sense. The information present in each
portion of the side channel signal is fully used for classification. This makes it a
very powerful tool for attacking a wide range of cryptographic implementations.
However, the effort required, in terms of creating a large number templates in an
adaptive manner, make the task daunting. It also presumes the availability of an
identical test device which can be programmed to the adversary’s whim. Since
the attack requires only a single invocation of the test device, all countermeasures
to side channel attacks that rely on limiting the number of samples that an
adversary can take with a fixed key may be vulnerable depending on the extent

Template Attacks 27

5.8 6 6.2 6.4 6.6 6.8

x 10
4

−1500

−1000

−500

0

500

Fig. 13. Average processed EM signals for two diffrent private exponents.

of contamination. Such countermeasures include high level protocols to limit key
usage and non-linear key update techniques of [12].

The requirement of having an identical experimental device is also the weak-
ness of the template approach. Randomization in the computation such as ad-
dress/data scrambling, blinding/masking of data and key bits and ensuring that
the adversary cannot control the choice of randomness in his own experimental
device is one way this attack can be mitigated. This countermeasure may not
be feasible for highly programmable devices such as SSL accelarators. The over-
riding principle in building in securing implementations against templates is to
minimize contamination caused by use of sensitive information in the clear.

References

1. Ross Anderson and Markus Kuhn. Low Cost Attacks on Tamper Resistant Devices.
In Proc. Security Protocols, 5th International Workshop, Paris, France, Springer-
Verlag LNCS Volume 1361 , pp 125–136, April 1997.

2. Dan Boneh, Richard DeMillo and Richard Lipton. On the Importance of Check-
ing Cryptographic Protocols for Faults. Journal of Cryptology, Springer-Verlag,
Volume 14, Number 2, pp 101–119, 2001.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao and Pankaj Rohatgi. Towards
Sound Countermeasures to Counteract Power–Analysis Attacks. Proc. Crypto ’99,
Springer–Verlag, LNCS 1666, August 1999, pages 398–412.

4. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao and Pankaj Rohatgi. A Cau-
tionary Note Regarding the Evaluation of AES Candidates on Smart Cards. Proc.
Second AES Candidate Conference, Rome, Italy, March 1999.

5. Christopher Clavier, Jean-Sebastien Coron, and Nora Dabbous. Differential Power
Analysis in the Presence of Hardware Countermeasures. In Proc. Workshop
on Cryptographic Hardware and Embedded Systems, Aug. 2000, LNCS 1965,
Springer-Verlag, pp 252–263.

28 S. Chari, J.R. Rao, and P. Rohatgi

6. Jean-Sebastien Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. In Proc. Workshop on Cryptographic Hardware and Em-
bedded Systems , Aug. 1999, LNCS 1717, Springer-Verlag. pp 292–302.

7. Jean-Sebastien Coron, and Louis Goubin. On Boolean and Arithmetic Masking
against Differential Power Analysis. In Proc. Workshop on Cryptographic Hard-
ware and Embedded Systems, Aug. 2000, LNCS 1965, Springer-Verlag. pp 231–237.

8. P.N. Fahn and P.K. Pearson. IPA: A New Class of Power Attacks. In
Proc.Workshop on Cryptographic Hardware and Embedded Systems, Aug. 1999,
LNCS 1717, Springer-Verlag. pp 173–186.

9. K. Gandolfi, C. Mourtel and F. Olivier. Electromagnetic Attacks: Concrete Results.
In Proc. Workshop on Cryptographic Hardware and Embedded Systems, Paris,
France, May 2001.

10. L. Goubin and J. Patarin. DES and Differential Power Analysis. In Proc. Work-
shop on Cryptographic Hardware and Embedded Systems, Aug. 1999, LNCS 1717,
Springer-Verlag. pp 158–172.

11. M.A. Hasan. Power Analysis Attacks and Algorithmic Approaches to Their Coun-
termeasures for the Koblitz Curve Cryptosystems. In Proc. Workshop on Cryp-
tographic Hardware and Embedded Systems, Aug. 2000, LNCS 1965, Springer-
Verlag. pp 93–108.

12. P. Kocher, J. Jaffe and B. Jun. Differential Power Analysis: Leaking Secrets. In
Proc. Crypto ’99, Springer-Verlag, LNCS 1666, pages 388–397.

13. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In Proc. Crypto ’96, LNCS 1109, Springer-Verlag, pp 104–113.

14. J. Kelsey, Bruce Schneier, D. Wagner and C. Hall. Side Channel Cryptanalysis
of Product Ciphers. Journal of Computer Security, Volume 8, Number 2–3, 2000,
pages 141–158.

15. Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smart Cards. In Proc. Workshop on Cryptographic Hardware
and Embedded Systems, Worcester, MA, USA, Aug. 2000, LNCS 1965, Springer-
Verlag. pp 78–92.

16. Thomas S. Messerges. Securing the AES Finalists Against Power Analysis Attacks.
In Proc. Fast Software Encryption Workshop 2000, New York, NY, USA, April
2000, Springer-Verlag.

17. Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Re-
sistant Software. In Proc. Workshop on Cryptographic Hardware and Embedded
Systems, Aug. 2000, LNCS 1965, Springer-Verlag. pp 238–251.

18. T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Power Analysis Attacks of Modular
Exponentiation in Smart Cards. In Proc. Workshop on Cryptographic Hardware
and Embedded Systems 1999, Aug. 1999, LNCS 1717, Springer-Verlag. pp 144–157.

19. Jean–Jacques Quisquater and David Samyde. Simple Electromagnetic analysis for
Smart Cards: New Results. Rump session talk at Cyrpto 2000.

20. Dakshi Agrawal, Bruce Archambeault, Josyula Rao, Pankaj Rohatgi. The EM
Side-Channel(s). In Proc. Workshop on Cryptographic Hardware and Embedded
Systems 2002, Aug. 2002,

21. Adi Shamir. Protecting Smart Cards from Power Analysis with Detached Power
Supplies. In Proc. Workshop on Cryptographic Hardware and Embedded Systems,
Aug. 2000, LNCS 1965, Springer-Verlag. pp 71–77.

22. H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. John
Wiley & Sons. New York. 1968.

	Introduction
	Theory
	The Multivariate Gaussian Model Approach
	The Pruning Process

	Case Study: RC4
	Template Attack on RC4

	Other Case Studies
	Implications and Countermeasures

