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Abstract. The development of masking schemes to secure AES imple-
mentations against power-analysis attacks is a topic of ongoing research.
The most challenging part in masking an AES implementation is the
SubBytes operation because it is a non-linear operation. The current
solutions are expensive to implement especially on small 8-bit proces-
sors; they either need many large tables or require a large amount of
operations. In this article, we present a masking scheme that requires
considerably less tables and considerably less operations than the previ-
ously presented schemes. We give a theoretical proof of security for our
scheme and confirm it with actually performed DPA attacks.

1 Introduction

The Advanced Encryption Standard (short: AES) [Nat01] is the worldwide de-
facto standard for symmetric encryption. It succeeds the older Data Encryption
Standard (short: DES) [Nat99]. Therefore, it will be used in manifold services
ranging from high-performance applications such as web services to low-cost (low
memory, low power consumption) implementations on smart cards. Especially
in the case of software implementations for smart cards limited memory (ROM,
RAM, XRAM) poses a challenging constraint for implementors. Even worse,
implementation attacks such as differential power analysis attacks (short: DPA
attacks) [KJJ99] require considerable effort from the implementor’s side to come
up with implementations that do not succumb to such attacks.

During the past years, a lot of effort has been devoted to the research in
DPA attacks. It has become clear that smart cards without built in countermea-
sures are highly susceptible to all kinds of DPA attacks. Hence, researchers have
proposed all kinds of schemes to secure implementations of different kinds of
cryptographic algorithms. The AES algorithm has received the largest attention
amongst symmetric schemes because of its expected widespread use.
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In this article, we focus on the scenario where AES is implemented in soft-
ware on 8-bit platforms such as commonly available smart cards. We propose a
masking scheme for this scenario which requires less tables, i.e., less memory,
and less operations than comparable schemes in the same scenario.

The remainder of this article is organized as follows. In Sect. 2, we give a
brief overview of AES. In Sect. 3, we review the problem of masked AES im-
plementations on restricted platforms and we survey related work. In Sect. 4,
we introduce our new scheme and provide a theoretical analysis of its security
against DPA attacks. In Sect. 5, we describe our implementation of our new
scheme on an 8-bit smart card. In Sect. 6, we report on the results of practical
DPA attacks that we have performed on our implementation. We conclude this
article in Sect. 7.

2 Advanced Encryption Standard

The AES is a symmetric cipher which encrypts/decrypts data with a block size
of 128 bits using a key of size 128, 192 or 256 bits. In the following we will briefly
decribe the encryption scheme of AES. The decryption scheme is equivalent but
uses the inverse transformations. The 16-byte plaintext p0p1...p15 is arranged in
four-by-four byte matrix, called state. All transformations in AES operate on
the state.

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

The following transformations are used in the AES cipher:

1. AddRoundKey: A round key is added to the state matrix using the XOR
operation. The round keys are derived from the key with the Key Expansion
algorithm.

2. ShiftRows: The second row of the state matrix is cyclically shifted by one
byte to the left, the third row by two bytes and the fourth row by three bytes.
The first row remains unchanged. The ShiftRows transformation increases
the diffusion properties of AES.

3. SubBytes: Each byte of the state matrix is substituted using a bijective
substitution box (short: S-box). The S-box is based on the non-linear inver-
sion in the finite field GF (28) and a bitwise affine transformation. The S-box
step increases the confusion properties of AES.

4. MixColumns: The MixColumns step is a linear transformation, which in-
creases the diffusion properties of AES. Each column is mixed using the
following matrix multiplication:

⎛
⎜⎜⎝

c0
c1
c2
c3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b0
b1
b2
b3

⎞
⎟⎟⎠
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where bi are the bytes of the input column, ci are the bytes of the out-
put column, and matrix elements {03}, {02} and {01} correspond to the
polynomials x + 1, x and 1.

5. Key Expansion: The key expansion derives the round keys from the cipher
key.

The AES encryption scheme is given below:

AddRoundKey

for round = 1 to Nr
SubBytes
ShiftRows
MixColumns
AddRoundKey

end

SubBytes
ShiftRows
AddRoundKey

The Key Expansion is typically performed interleaved with the rounds in soft-
ware. The number of rounds Nr depends on the key size. If the key size is 128,
192 or 256 bits 10, 12 or 14 rounds are used, respectively. All AES transforma-
tions but SubBytes are linear. Hence, only SubBytes requires special attention
with regard to masking. This articles intensely focuses on a secure yet efficient
software implementation of SubBytes.

3 Related Work

In a typical software implementation, the SubBytes operation is implemented
as a table look-up. Hence, for an input value in of a SubBytes operation, the
output is derived as out = S(in). As there are 16 8-bit chunks in the AES state,
16 table look-up operations have to be performed in one encryption round (not
taking the key schedule into account).

When we mask the SubBytes operation with a value m (the mask), i.e., when
we add a random value m′ (the mask) to its input, we have to re-compute the
table S such that out = S(in)+ m, where in is masked,i.e., in = x+ m′. Hence,
we need a table MSubBytes() such that

MSubBytes(x + m′) = SubBytes(x) + m.

The MSubBytes() table for the masks m and m′ (for simplicity, m is often
chosen to be equal to m′) is calculated according to Algorithm 1. The exclusive-
or (short: XOR) operation is denoted by + in this article.

When more than one mask m is to be used, more MSubBytes() tables need
to be computed. For example, when using 16 masks m, 16 tables are needed.
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Algorithm 1. Computation of Masked SubBytes
Require: m, m’
Ensure: MaskedSubBytes(x + m′) = SubBytes(x) + m,
1: for i = 0 to 255 do
2: MaskedSubBytes(i + m′) = Subbytes(i) + m
3: end for
4: Return(MaskedSubBytes)

As stated in [GT03], the usage of the same mask for all 16 s-boxes represents a
serious threat, because intermediate variables (e.g. the s-box outputs) are masked
with the same mask and their mutual correlation can be used to apply second
order DPA attacks.

For this article, we consider the scenario where AES is implemented on an
8-bit smart card. We assume that AES is not used for bulk encryption. Instead,
AES is used for example in a challenge-response protocol, where only one in-
stance of the algorithm is typically computed at a time.

For every mask m, a masked table needs to be computed. There are sev-
eral strategies an implementor can follow. Either all 256 masked tables are pre-
computed and stored in a memory, or, only t tables for the t 8-bit masks are
pre-computed at the beginning of the AES algorithm and stored in memory.
Another option is to compute the masked table on the fly whenever it is needed
during the encryption algorithm.

We argue that in practice the second method is the most attractive one,
because it gives the best tradeoff between the amount of memory and the number
of operations. Remember that the size of one table is 256 bytes. Counting the
number of operations for this algorithm for t masks shows that in total an
amount of 2 × t × 256 table look-ups read/write operations and 2 × t × 256
XOR operations are needed. In total, (t + 1) × 256 bytes of memory are used.
In typical AES implementations, a separate mask for each 8-bit chunk would
be used. That amounts then to 8192 table look-ups, 4352 bytes of memory and
8192 XOR operations.

Many algorithmic countermeasures have been proposed for the AES algo-
rithm, see [AG01], [GT03], [TSG03], [TK04], [BGK05] and [OMPR05]. They
are all based on masking the intermediate value, i.e., adding a random num-
ber (the mask) to the intermediate AES values. However two of them, [AG01]
and [TSG03], are both susceptible to a certain type of (first-order) differential
side-channel attack, the zero-value attack. The latter one has turned out to be
vulnerable even to standard differential side-channel attacks [ABG04].

The countermeasure presented in [GT03] leads to very costly implementa-
tions. This is due to the fact that in order to circumvent the zero-value problem,
the authors propose to embed the inversion operation (which is part of Sub-
Bytes) into a larger algebraic structure such that the zero-value is mapped to
different non-zero values. Although this construction is mathematically elegant,
implementations thereof, especially on 8-bit platforms, are not.

The countermeasure presented in [TK04] uses pre-computed discrete loga-
rithm and exponentiation tables to realize the SubBytes operation (i.e., the
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inversion operation that is part of the mathematical description of SubBytes).
This approach is based on the fact that a non-zero element in a finite field can
be inverted by computing the logarithm of the element to a particular base1 and
exponentiating the base again with the negated logarithm. The inversion of the
zero element has to be carefully taken into account by using a conditional check,
e.g. the authors suggest to manipulate the discrete logarithm and exponentia-
tion tables in such a way that the zero element is inverted correctly to itself.
Unfortunately, we believe that this approach has a flaw which is linked to the
inversion of the zero element. In their work, the authors state that conditional
branching for the zero element can be avoided by changing two table elements:
log[0] = 2n − 1 and alog[2n − 1] = 0. However, because an inversion is defined as

α−1 = alog[(2n − 1) − log[α]]

the inversion of zero will result in 0−1 = alog[0] = 1 �= 0 and, moreover, the
inversion of 1 will result in 1−1 = alog[(2n − 1) − log[1]] = alog[2n − 1] = 0 �= 1.
As a matter of fact, by setting log[0] = 0, log[1] = 2n − 1 and alog[2n − 1] = 0,
we found a possibility to correct the log and alog tables in such a way that
both inversions will work properly, again. In their paper, a multiplication of two
elements is defined as

α · β = alog[log[α] + log[β] mod 2n − 1]

However, when using this method a multiplication with zero will only always
result in zero, if conditional branching is used. Based on the inversion and mul-
tiplication with the log and alog tables the authors propose two different masking
schemes which are supposed to provide a secure inversion. We have carefully im-
plemented and tested both schemes. We observed that in both schemes there
occur special cases when the s-box input, the mask or masked, intermediate
variables are equal to zero and which will result in a faulty behavior of the
proposed masking schemes. We believe that a correction of their approach is
only possible with the use of conditional branches, which makes it susceptible to
power-analysis attacks.

The countermeasures presented in [BGK05] and [OMPR05] are based on a
similar idea. In both papers, the authors assume that the inversion operation is
computed step-by-step, either as exponentiation or with composite field arith-
metic. The exponentiation method is advertised for software implementations
and described in [BGK05]. The composite-field method is advertised for hard-
ware implementations and is described in detail in [OMPR05]. Both methods
do not seem to be particularly suited for 8-bit software implementations. How-
ever, as we will show in this article, especially the composite-field method can
be adapted in such a way that it is suitable for 8-bit platforms.

4 A New Scheme for Efficiently Masking AES in Software

The only difficult part in masking AES is to mask the SubBytes operation. The
SubBytes operation is composed of two parts: an inversion in GF (28) and an
1 i.e. for a chosen generator.



An Efficient Masking Scheme for AES Software Implementations 297

affine mapping. Again, masking the affine part is easy, so we focus on the non-
linear inversion operation only. Our goal is that all input and output values in
the computation of the inverse are masked. According to [OMPR05], a masked
input can be transformed to the composite field GF (24) × GF (24) with an iso-
morphic mapping, where it can be securely and efficiently inverted, and finally
transformed back to the GF (28). The inversion operation in the composite field
can be computed as follows:

((ah+mh)x+(al+ml))−1 =(a′
h + m′

h)x + (a′
l + m′

l) (1)

a′
h + m′

h = fah
((ah + mh), (d′ + m′

d), mh, m′
h, m′

d)
= ah × d′ + m′

h (2)

a′
l + m′

l = fal
((a′

h+m′
h), (al+ml), (d′+m′

d), ml, m
′
h, m′

l, m
′
d)

= (ah + al) × d′ + m′
l (3)

d + md = fd((ah + mh), (al + ml), p0, mh, ml, md)
= a2

h × p0 + ah × al + a2
l + md (4)

d′ + m′
d = fd′(d + md, md, m

′
d)

= d−1 + m′
d (5)

The functions fah
, fal

, fd and fd′ are functions on GF (24).
This calculation of a masked inversion operation is based on the composite

field approach that is described in detail in [WOL02].
Whereas in [OMPR05] this approach is applied to hardware implementations

and has been extended to work in so-called tower fields, we pursue a different
approach. We show that these formulae can be mapped to a sequence of table
look-ups and XOR operations. We show how to define tables which only require
little space in memory. Furthermore, we show that only a small number of table
look-ups are required to calculate the formulae.

4.1 Pre-computed Tables

We compute a number of tables that do the operations in GF (24) and store
them in memory:

Td1 : ((x + m), m) �→ x2 × p0 + m

Td2 : ((x + m), (y + m′)) �→ ((x + m) + (y + m′)) × (y + m′)
Tm : ((x + m), (y + m′)) �→ (x + m) × (y + m′)

Tinv : ((x + m), m) �→ x−1 + m.

All tables (or functions) take two elements of GF (24) as inputs and give an
element of GF (24) as output.

With those 4 Tables, we can compute formulas (2)-(5). In order to map
GF (28) elements to GF (24) × GF (24) elements and vice versa, we need two
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more tables Map : x �→ z and Map−1 : z �→ x. Map takes an element x of
GF (28) as input and gives an element z of GF (24) × GF (24) as output. Map−1

works vice versa. We assume that for all tables the input masks and the out-
put masks are identical. Hence, the size of one table is at most 256 bytes and
so we can pre-compute all tables and store them in read-only memory (ROM),
since there is no need to compute them during run-time. This is a significant
advantage over the use of MSubBytes() tables. They have to be computed for
every new mask m during run-time or at least at the invocation of a new AES
encryption run.

4.2 Masked Inversion

First, we have to compute the masked value of d, i.e., d+md = d+mh according
to (4):

fd(ah + mh, al + ml, mh, ml, mh) = Td1(ah + mh, mh)
+ Td2((ah + mh), (al + ml))
+ Tm((ah + mh), ml)
+ Tm((al + ml), mh) + Tm((mh + ml), ml).

(6)

It is easy to check that the result will be indeed a2
h × p0 + ah × al + a2

l + mh.
For this computation we need five table look-up operations (TLs), four XOR
operations and an additional XOR operation to compute (mh + ml) which is
used as input in Tm((mh + ml), ml). Note that the results of Tm((ah + mh), ml)
and Tm((al + ml), mh) are used again in (8) and (9), respectively, therefore it is
a good idea to store these results and reuse them later on in order to save these
two look-up operations.

In the next step we compute the inverse of the masked d with one more table
look-up operation:

fd′(d + mh, mh, mh) = Tinv(d + mh, mh). (7)

In order to derive fah
(), we first compute d−1 +ml by one XOR addition with

the term (mh +ml). Then fah
(ah +mh, d−1 +ml, mh, mh, ml) can be computed

as follows:

fah
(ah + mh, d−1 + ml, mh, mh, ml) = Tm(ah + mh, d−1 + ml)

+mh + Tm(d−1 + ml, mh)
+Tm(ah + mh, ml) + Tm(mh, ml). (8)

This computation gives as output ah × d−1 + mh. For this computation, we
need three new table look-up operations and four XOR operations in total.

In the last step we derive fal
(ah×d−1+mh, al+ml, d

−1+ml, ml, mh, ml, ml).
Hence, we calculate:
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fal
(ah × d−1 + mh, al + ml, d

−1 + ml, ml, mh, ml, ml)
= Tm((al + ml), (d−1 + mh)) + ml + Tm(d−1 + mh, ml)
+Tm(al + ml, mh) + fah

+ mh + Tm(mh, ml). (9)

This gives al ×d−1+ah ×d−1+ml as a result. Note that the term Tm(mh, ml)
occurs in the computation of fah

and fal
.

Hence, by also storing fah
+ Tm(mh, ml) during the computation of fah

and
using this term during the computation of fal

, one additional table look-up
and one XOR can be saved. Therefore, for this computation we only need two
additional table look-ups and five XOR operations.

Prior to the inversion in GF (24) × GF (24) we need to map the 8-bit values
(elements in GF (28)) to 2×4-bit values (elements in GF (24)×GF (24)). This is
done by a table look-up as well. Mapping back from GF (24)×GF (24) to GF (28)
can be achieved with an additional look-up table. Moreover, it makes sense to
combine the isomorphic mapping from GF (24) × GF (24) to GF (28) with the
affine transformation that is part of SubBytes and use only one table for both.

Total Costs of a Masked Inversion. If we review the number of table look-ups
(TLs) and XOR additions required for an entire masked AES SubBytes opera-
tion, we need five TL operations and four XOR additions in (6), one TL operation
in (7), three TL operations and four XOR additions in (8), two TL operations
and five XOR additions in (9). Furthermore, we need three TL operations for
the isomorphic transformations: two TL operations to map the masked inver-
sion input and the mask to GF (24)× GF (24) and one TL operation to map the
masked result of the inversion back to GF (28) and perform the affine transform.

This sums up to a total of 14 table look-up operations and 15 XOR operations.

4.3 Theoretical Security Analysis

In this section we show that all data-dependent intermediate masked values that
are computed during the masked inversion operation are statistically indepen-
dent from the unmasked values.

Hence, we follow the definition of security that was introduced in [CJRR99]
and strengthened in [BGK05].

The values that we have to investigate are the outputs of the functions (tables)
Tdi, Tm, Tinv, Map, Map−1 and all intermediate values that occur after an
XOR operation. In [OMPR05] it has been shown in Lemma 5 that a sum of
independent masked values will again be independent from the unmasked values
as long as an independent mask is used during the summation. Furthermore, in
Lemmas 1–4 it has been shown that the XOR operation, as well as the masked
multiplication and the masked squaring are secure in the sense that their output
is statistically independent from the plaintext input.

Lemma 1. Let x ∈ GF (2n) be arbitrary and let p0 ∈ GF (2n) be an arbitrary
but fixed value. Let m ∈ GF (2n) be independently and uniformly distributed in
GF (2n). Then Td1(x + m, m) = x2 × p0 + m is uniformly distributed regardless
of x. Therefore, the distribution of x2 × p0 + m is independent of x.
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Proof. As x is an element of the binary extension field, the element x2 =
(
∑

i aiα
i)2 =

∑
i aiα

2i with ai ∈ {0, 1} is in GF (2n) as well. Hence, all ele-
ments of GF (2n) are quadratic residues and thus x2 is uniformly distributed on
GF (2n). Consequently, also x2 × p0 and x2 × p0 + m are uniformly distributed.

For the independency of the output of Td2 we reuse Lemma 2 of [BGK05].

Lemma 2. Let x, y ∈ GF (2n) be arbitrary. Let m, m′ ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the probability distribution of
Tm(x + m, y + m′) = (x + m) × (y + m′) is

Pr((x + m) × (y + m′) = i) =
{

2n+1−1
22n , if i = 0, i.e., if m = x or m′ = y

2n−1
22n , if i �= 0.

Therefore, the distribution of (x + m) × (y + m′) is independent of x and y.

Lemma 3 follows directly from Lemma 2 and the observation that all elements
of GF (2n) are quadratic residues.

Lemma 3. Let x, y ∈ GF (2n) be arbitrary. Let m, m′ ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the probability distribution of
Td2(x + m, y + m′) = (x + m) × (y + m′) + (y + m′)2 is

Pr((x+m)×(y+m′)+(y+m′)2 = i)=
{

2n+1−1
22n , if i=0, i.e., if m=x or m′=y

2n−1
22n , if i �= 0.

Therefore, the distribution of (x + m) × (y + m′) is independent of x and y.

The independence of Tinv(x + m, m) = x−1 + m is clear as the inversion
operation is bijective (note that the zero element is mapped to the zero element)
and the XOR of any a + m is independent from a. The mappings between
GF (28) and GF (24) × GF (24) are bijections and therefore their masked output
is independent from the unmasked input in a statistical sense.

Based on these results we may conclude that the algorithm for computing
masked inversion complies to the definition of security used in [BGK05].

Recently it was discovered, see [MPG05] and [SSI04], that glitches in CMOS
circuits make masked implementations vulnerable to standard DPA attacks. Our
masking scheme is also secure when glitches occur in a circuit as we only use
table look-ups and XOR operations. For both operations it has been shown that
glitches do not have an effect on their security, see [MPG05].

5 Implementation of the New Scheme

In our following analysis we regard the implementation of the SubBytes trans-
formation in assembly on a smart card based on the 8-bit RISC architecture.
In total, we require six pre-computed tables which can be stored in read-only
memory (ROM). Table Td1 takes two GF (16) elements as input and gives one
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GF (16) element as output. The same holds for Td2, Tm and Tinv, as well. Hence,
these four tables map an 8-bit input to a 4-bit output value.

In a practical software implementation there are two possibilities how the
tables Td1, Td2 , Tm and Tinv can be stored in memory on an 8-bit architecture.
In a compact representation, each byte of these four tables stores two 4-bit
output values, hence, each table requires 128 bytes in ROM and the four tables
altogether require 4×128 = 512 bytes in ROM. The disadvantage of this compact
representation is based on the fact that a few instructions are required after each
table look-up to either erase the unwanted upper 4-bit half or to shift the upper
4-bit half by four bits to the right in order to erase the unwanted lower 4-bit
half. These instructions are not required, if each byte of the tables Td1 , Td2, Tm

and Tinv only stores a single 4-bit result and the upper 4-bit half is always set to
zero. This representation is more efficient in terms of clock cycles, but requires
4 × 256 = 1024 bytes in ROM. In the following we will only regard the efficient
representation. The two isomorphic mappings from GF (28) to GF (24)×GF (24)
and back from GF (24) × GF (24) to GF (28) deliver a GF (24) × GF (24) and a
GF (28) element as output, i.e. these two tables map an 8-bit input to an 8-bit
output. Hence, in total we need 4 × 256 + 2 × 256 = 1536 bytes to store all six
tables in ROM.

The smart card architecture is a RISC design and provides 32 internal reg-
isters. A TL operation which reads an 8-bit value from a table stored in ROM
to an internal register takes five clock cycles. A TL operation which reads an
8-bit value from a table stored in RAM to an internal register or writes an 8-bit
value to a table stored in RAM takes four clock cycles. The XOR addition of
two internal registers requires only a single clock cycle.

In an unmasked AES software implementation every SubBytes step would
only require a single TL operation. If a standard masked table look-up, such as
described in Sect. 3 is used, the SubBytes table would be stored in ROM and the
masked tables would be derived from it prior to an AES encryption/decryption
and then stored in RAM. If only one encryption is performed, this pre-
computation would very likely be done for the 16 masks, only, and thus re-
quire 16× 256 = 4096 bytes in RAM. During the encryption/decryption of AES
only a single TL operation would be required for each SubBytes step. However,
the pre-computation of the each masked table in RAM would require 256 XOR
additions to mask the table index, 256 TL operations to read the unmasked ta-
ble entries from ROM, 256 XOR additions to mask the table entries and finally
256 TL operations to store the masked table in RAM. If tables are generated in
such a way for 16 different masks, this will result in pre-computational costs of
16 × (256 + 256 × 5 + 256 + 256 × 4) = 45056 clock cycles. If several encryption
operations would be performed after each other and the same set of masks is
used over and over again, the pre-computational costs occur only once. However,
from a security point of view it is advisable to update the masks as often as pos-
sible. Another possibility is to store all masked tables in ROM. However, this
would require 256 × 256 = 64 KB in ROM which might exceed the limitations
in constrained environments such as smart cards.
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Table 1. Comparison of various AES software implementations with regard to code
size and speed for a single encryption

ROM RAM PRE-TL PRE-XOR TL XOR cycles
unmasked 256 0 0 0 160 0 800

256 fixed masks 64 KB 0 0 0 160 0 800
single mask 256 256 512 512 160 0 3456
16 masks 256 4096 8192 8192 160 0 45696
MOS-box 1536 0 0 0 2240 2400 13600

As stated in Sect. 4, when using our proposal an entire SubBytes step for an
arbitrary mask requires 14 TL operations and 15 XOR additions which results
in 14 × 5 + 15 = 85 clock cycles. For an entire AES encryption this results in
10× 16× 85 = 13600 clock cycles. Our method requires 1536 bytes in ROM and
no RAM, moreover, no pre-computation needs to be performed. In Tab. 1 the
costs of various masked and unmasked AES implementations are compared. Our
proposal is referred to as ”‘New”’ in Tab. 1.

Hence, the complexity of our proposal is lower in terms of memory and op-
erations for a single encryption. If only a single mask is used, our proposal is
about four times slower for a single encryption, however, our approach does not
require any RAM. Furthermore, it has been pointed out in [GT03] that the usage
of a single mask in AES may allow simple second-order DPA attacks, which can
be avoided by the usage of 16 different masks in each round. If encryptions are
repeated several times with the same set of 16 masks, our proposal will be slower
after four encryptions, but will always require less memory.

6 Power Analysis of the New Scheme

In order to confirm the security claims that we made in Sect. 4 and to assess the
practical security of our implementation, we performed DPA attacks on an AES
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Fig. 1. DPA of the AES with no active countermeasure



An Efficient Masking Scheme for AES Software Implementations 303

3 4 5 6 7 8 9 10

x 10
4

−30

−20

−10

0

10

20

30

40

Fig. 2. DPA of the AES with our new masked s-box scheme

implementation based on our new inversion scheme. The target hardware was
an 8-bit smart card. DPA attacks were performed in two independent experi-
ments. The first time we performed DPA attacks on the implementation with
the masking countermeasure switched off, i.e. all mask were fixed to zero. The
second time we performed DPA attacks on the implementation with the masking
countermeasure being active, i.e. all masks were randomly generated. In both ex-
periments 1000 random plaintexts were encrypted and the corresponding power
traces were measured using a digital oscilloscope with a sampling rate of 100
MSa/s and a current probe. The resulting differential traces are shown in Fig. 1
and Fig. 2.

It is obvious that the DPA of the unprotected AES implementation is suc-
cessful, since a distinct correlation peak is contained in Fig. 1 for the correct
key hypothesis. However, as shown in Fig. 2 the DPA of our new protected AES
scheme was not successful.

7 Conclusion

In this article we have presented a new masking scheme for software implemen-
tations of AES on 8-bit platforms. Our scheme is based on computing the inverse
operation, which is part of SubBytes, with composite-field arithmetic. All steps
that are needed throughout the computation are done via table look-ups and
XOR operations. We have proven that all intermediate masked values that oc-
cur during the computation are independent from unmasked intermediate values.
We have confirmed our theoretical proof with actually performed DPA attacks.
Our scheme is even secure when glitches in the underlying CMOS circuit occur
because it only uses table look-ups and XOR operations. The strong point of
our scheme is based on the fact that it is possible to use different masks for all
16 SubBytes operations with no RAM requirements. We believe that this is im-
portant, since RAM is generally very sparse on embedded devices such as smart
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cards. Hence, our scheme provides a nice tradeoff between memory requirements
and speed and seems to be well suited for small platforms.

Acknowledgements
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