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Abstract. The recently proposed multiplicative masking countermea-
sure against power analysis attacks on AES is interesting as it does
not require the costly recomputation and RAM storage of S-boxes
for every run of AES. This is important for applications where the
available space is very limited such as the smart card applications.
Unfortunately, it is here shown that this method is in fact inherently
vulnerable to differential power analysis. However, it is also shown that
the multiplicative masking method can be modified so as to provide
resistance to differential power analysis of nonideal but controllable
security level, at the expense of increased computational complexity.
Other possible random masking methods are also discussed.
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1 Introduction

Side-channel attacks on software or hardware implementations of various cryp-
tosystems aim at recovering the secret key information from certain physical
measurements performed on the electronic device during the computation such
as the power consumption, the time, and the electromagnetic radiation. Power
analysis attacks [9] are very powerful as they do not require expensive resources
and as most implementations without specific countermeasures incorporated are
vulnerable to such attacks. Among them, the (first-order) differential power anal-
ysis (DPA) attacks are particularly impressive, because they use relatively simple
mathematical tools and techniques that are independent of the implementation
of the cryptographic algorithm. Moreover, the countermeasures are typically
costly in terms of speed performance and memory requirements.
� A preliminary version of this work was presented at the Gemplus Quarterly meeting,
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The goal of simple power analysis (SPA) attacks is to deduce some infor-
mation about the secret key, such as the Hamming weight of some parts of the
key, from a single power consumption curve. This may be possible if, for ex-
ample, there are branches in the computation that depend on the secret key.
More generally, one can also collect a large training set of power consumption
curves from different secret keys (and possibly different input data) and then
use appropriate statistical hypothesis testing methods in order to identify traces
or signatures of the parts of the secret key hidden in the curves. For example,
key scheduling algorithms for block ciphers may especially be vulnerable in this
regard, due to the absence of the randomization effect of input data. However,
the statistical techniques to be used may be complicated and dependent on the
particular implementation.

The DPA attack [9] requires a set of power consumption curves obtained by
running the cryptographic algorithm a number of times for the same secret key
and different inputs. A necessary algorithmic condition, the so-called fundamen-
tal hypothesis, for the DPA attack to be effective is the existence of one or more
intermediate variables in the algorithm that can be expressed as or are corre-
lated to functions depending on a small number of key bits and on known input
or output data. The key bits involved may then be reconstructed by partition-
ing the set of curves according to the value of the chosen intermediate variable
corresponding to the key bits guessed and to the input or output data known
and by computing and comparing some simple statistic, such as the average, on
the partitioned curves at individual points in time. The attack is successful if
the correct guess about the key bits results in a significant difference between
the computed average curves at one or more points in time. For other possibil-
ities, see [4]. What makes the attack practically very interesting is that many
cryptographic algorithms satisfy the fundamental hypothesis. For example, the
intermediate variables in the first or the last few rounds of practical block ciphers
are especially vulnerable.

A higher-order DPA attack is a generalization of the (first-order) DPA attack
in which the power consumption curves are analyzed by using a joint statistic
applied to collections of points in time. The general attack is more powerful, but
may be more complex and considerably more complicated as the choice of these
points and possibly also of the joint statistic is likely to depend on the particular
implementation.

In principle, the complexity of the side-channel attacks can be increased by in-
troducing physical or algorithmic countermeasures. A general strategy to render
the SPA and DPA attacks more difficult to mount is to balance and randomize
elementary computations involving the secret key, e.g., by randomly introducing
dummy operations and timing shifts, as well as by randomizing the order of el-
ementary computations and the computations themselves. A general technique
to prevent the first-order or higher-order DPA attacks is random data splitting
[7], [3], especially for the computation of intermediate variables satisfying the
fundamental hypothesis. It is pointed out in [10] that for the (first-order) DPA,
instead of splitting the data into two parts one may as well apply random masks
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to data which are easier to implement. Of course, one has to be careful to mask
the data completely and thus avoid weaknesses such as the one shown in [5]
for a masking technique from [10]. Also, the computations involved in masking
have to be performed in a secure way, which itself is not vulnerable to DPA.
Random masks have to be generated for each new run of the cryptographic al-
gorithm, but may be repeated within the algorithm. The repetitions generally
increase the vulnerability to higher-order DPA. The random masks can be com-
bined with data by using (quasi)group operations such as the bitwise addition
or modular integer addition.

If an affine transformation is applied to masked data and if the masking
operation is the same as the corresponding linear operation, then only the ad-
ditive constant has to be recomputed for each new mask in order to maintain
the equivalence of the data transformations. However, this is generally not the
case with nonlinear transformations. They typically have to be recomputed and
stored depending on the mask and this can be very costly for many cryptographic
algorithms including AES [6]. In AES, the only nonlinear transformations are
nonlinear parts of 8 × 8-bit S-boxes which perform the multiplicative inversion
in GF(256). In [2], a masking technique is proposed which combines the usual
binary additive masking with the multiplicative masking of data, using the mul-
tiplication in GF(256), thus avoiding the costly recomputation and RAM storage
of S-boxes.

In this paper, it is shown that this multiplicative masking technique is vul-
nerable to the first-order DPA attack and in some sense even more than AES
without masking. This is essentially because the all-zero input to the S-boxes is
not effectively masked by the multiplicative mask and the binary additive mask
is first removed in order to apply the multiplicative mask.1 Moreover, it is argued
that the weakness is inherent to the multiplicative masking and therefore cannot
be remedied so as to achieve ideal security. In addition, the so-called embedded
multiplicative masking technique which can achieve approximate security with a
controllable security level is introduced. It is also pointed out that the masking
technique [10] in which only one S-box is recomputed and stored in RAM and
used repeatedly during one execution of AES is vulnerable to a relatively simple
second-order DPA attack.

The main lines of the DPA attack [9] applied to AES are described in more de-
tail in Section 2 and the multiplicative masking technique is presented in Section
3. The inherent weakness is explained in Section 4, the embedded multiplicative
masking technique is proposed in Section 5, and conclusions are given in Sec-
tion 6.

1 A similar power analysis attack, although not in the DPA form, is independently
given in the unpublished manuscript “Time and memory efficiency in protecting
AES against higher order power attacks,” by N. T. Courtois and M.-L. Akkar, from
April 2002.
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2 Differential Power Analysis of AES

AES is a product block cipher composed of a number of rounds each consisting
of a reversible nonlinear transformation providing confusion and a reversible lin-
ear transformation providing diffusion, where the linearity is with respect to the
binary field, GF(2). The expanded secret key is bitwise added to the plaintext
and to the output of each round. The nonlinear transformation consists of iden-
tical 8 × 8-bit S-boxes each performing the byte substitution ByteSub defined
as the multiplicative inversion in GF(256), leaving the all-zero input intact, fol-
lowed by an affine 8 × 8-bit transformation. The linear transformation consists
of a permutation of output bytes of S-boxes denoted as ShiftRow followed by
a linear transformation denoted as MixColumn, which is removed from the last
round. More details can be found in [6], but are irrelevant for our analysis.

According to [9], the DPA attack on AES consists of the following stages.
The intermediate variables satisfying the fundamental hypothesis are the output
bytes of the S-boxes or of just the nonlinear parts of the S-boxes in the first
round. Each of them is a function of the input byte which itself is a bitwise
sum of the corresponding plaintext and expanded key bytes. Accordingly, if the
plaintext byte is known and the key byte is guessed correctly, then the S-box
output byte can be computed correctly. The objective of the attack is to recover
the expanded key in a byte-by-byte divide-and-conquer manner.

In the first stage, a sufficient number, N , of curves are obtained by measuring
the power consumption during the execution of (the first round of) AES for the
same secret key and N different plaintexts. The average C of these N curves is
then computed. The second stage is performed for each of the S-boxes in the
first round. For each of 256 possible values of the targeted expanded key byte
K, a subset of M (on average, M = N/2m) plaintexts resulting in a chosen fixed
m-bit value of the partial output byte of the considered S-box are identified,
the corresponding M curves are extracted, and their average C(K) computed.
For example, the chosen fixed value may have maximal or minimal Hamming
weight (all-one or all-zero m-bit words). More generally, if one knows good power
consumption models of the involved components, an optimal subset of M curves
can be chosen according to a set of 28−m or of any other number of output byte
values best distinguished from the others with respect to power consumption, as
proposed in [1] for m = 1.

A value K is then assumed to be correct if the difference between the two
average curves, C(K) and C, contains one or more noticeable peaks. The peaks
are due to the same value of the S-box output being computed at the same time
for each of the extracted M curves, if the value K is correct, and to unbalanced
power consumption associated with different S-box output values. This is the
main point of the DPA attack. On the other hand, if the value K is incorrect,
then the outputs of the S-box will vary and the peaks will not be observed. More
precisely, this is the case for m < 8. For m = 8, as the S-boxes are reversible, a
fixed output byte value implies that the input byte value is also fixed. Therefore,
even if the guessed value K is incorrect, then for the extracted curves both the
input and output bytes will have fixed values, different for different K, also
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giving rise to observable peaks, possibly of different magnitudes for different K.
As a consequence, the reliable statistical distinction of the correct K may be
infeasible.

If m decreases, then M increases, but the impact of the repeated computation
on each of the M extracted power consumption curves becomes statistically
less significant. Also, it is not clear how one can simultaneously use more than
just one fixed output m-bit value in order to increase the statistical distinction
between the correct and incorrect key values. Nonetheless, this may be possible.

According to the key schedule in AES, if the key size is not bigger than the
plaintext block size, then the recovered expanded key bytes directly specify the
secret key. Otherwise, the DPA attack should also be applied to the second round
of AES in order to recover the whole secret key.

3 Multiplicative Masking of AES

The starting idea of the method proposed in [2] in order to prevent the DPA
attack on AES is to use the binary additive mask which is compatible with the
binary linear or affine transformations in AES. Accordingly, as far as the affine
transformations are concerned, only the additive constants are affected by this
mask. However, if the additive mask is applied to the input of the nonlinear
part of an S-box in AES, then this nonlinear part has to be recomputed for each
new mask used. Recall that the nonlinear part, F , of the S-box transformation
ByteSub is the multiplicative inversion in GF(256) extended by mapping the
all-zero input into the all-zero output. For simplicity, F is called the inversion in
GF(256). The main idea from [2] is to use the nonzero multiplicative mask, with
respect to the multiplication in GF(256), for the data passing through F , without
having to recompute and store F . To this end, one has to convert the additive
mask into the multiplicative mask at the input of each F and to reproduce the
additive mask from the multiplicative mask at the output of each F . A way,
secure with respect to DPA, of converting the masks is suggested in [2]. More
details are given below.

Fig. 1 shows the data flow in the i-th round of AES without and with the
masking countermeasure. A general rule in all the figures presented is that the
expressions for input, output, and all intermediate data are displayed within
the rectangular blocks. It is assumed that the ByteSub and Modified ByteSub
transformations act on all the bytes in a block. Note that the expanded key
is bitwise added to the plaintext to form the input to the first round, that the
MixColumn transformation is removed from the last round, and that the additive
mask is not produced at the output of the last round. According to [2], the
additive mask X is the same in every round. In fact, keeping the same additive
mask in every round would matter if the S-boxes had to be recomputed for each
new mask, because in that case the same recomputed S-boxes could be used in
each round. So, restoring the same mask X in the last step of each round is not
really needed. Instead, one can just add the expanded key Ki and thus effectively
obtain the output mask X(3). Only in the last round, the output mask has to
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be removed. Here, the masks are transformed by the linear transformations as
X(1) = L(X), X(2) = ShiftRow(X(1)), and X(3) = MixColumn(X(2)), where L
denotes the linear part of the affine transformation of ByteSub combined for all
the bytes in a block. So, essentially only the ByteSub transformation has to be
modified, because of the nonlinear part contained.
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Fig. 1. The round i of AES without and with masking countermeasure.

The data flow through the original and modified ByteSub transformations,
acting on bytes, is shown in Fig. 2 (the index j stands for a particular byte in a
block and the index i stands for a particular round). The affine transformation is
unchanged, and only the nonlinear transformation, F , has to be modified. This
is achieved by using a nonzero multiplicative mask Yi,j in a way displayed in
Fig. 3, which is self-explanatory.
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Fig. 2. The ByteSub transformation without and with masking countermeasure.

Recall that the addition in GF(256) is the same as the bitwise addition. It
follows that F does not have to be recomputed and stored in a look-up table
for each new mask Yi,j . This is due to the multiplication in GF(256) being
compatible with F or, more precisely, to the equality

F (A⊗ Y ) = F (A)⊗ F (Y ) (1)

where F (Y ) �= 0 if Y �= 0, so that F (A) can be recovered from F (A) ⊗ F (Y ).
In other words, if a masked input is transformed by F itself, then the masked
desired output is obtained. So, one just has to convert the multiplicative into
the additive mask and vice versa, and that can be done by one more inversion,
four multiplications, and two additions in GF(256).

Note that in general, if two, possibly different, group operations ∗ and • are
used for masking the input and output data for a transformation F , respectively,
then the masked data should be transformed by the modified transformation F ′

satisfying F ′(A ∗ Y1) = F (A) • Y2. Equivalently, F ′ is defined by

F ′(A) = F (A ∗ Y −1
1 ) • Y2, (2)

where Y1 and Y2 are the input and output masks, respectively, which can be
mutually related. In order to resist DPA, F ′ should not be directly implemented
by using F and (2). For example, a secure way would be to use a look-up table
for F ′, but it has to be recomputed and stored in RAM for every new pair of
masks Y1 and Y2.
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The multiplicative masks Yi,j and the additive masks Xj can be randomly
chosen so as to be uniformly distributed and mutually independent. Also, Yi,j

can be the same for each round i and possibly related to Xj , but this gener-
ally increases the vulnerability to higher-order DPA. Since all the intermediate
variables in Fig. 3 are masked, it is claimed in [2] that the masked AES should
be resistant to the (first-order) DPA attack. This masking method is important,
because it avoids the recomputation and storage of S-boxes for each new run of
AES, which would, for example, require 256× 16 bytes of RAM for the 128-bit
AES if all the S-boxes in a round are masked by mutually independent masks.
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Fig. 3. Modified inversion in GF(256) with multiplicative masking countermeasure.
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4 Differential Power Analysis of Masked AES

In this section, a subtle security flaw of the masking method [2] described in
Section 3 is pointed out. In addition, it is argued that the multiplicative masking
for AES is inherently vulnerable to the DPA attack.

The basic problem with the multiplicative mask is that it does not mask
the all-zero byte value of data, that is, the all-zero byte remains unchanged after
masking by a multiplicative mask. On the other hand, the all-zero (intermediate)
data bytes cannot be avoided in AES. As a consequence, there are intermediate
variables in the modified inversion scheme from Fig. 3 that are not masked
completely and satisfy the fundamental hypothesis for DPA by being correlated
to a function depending on only 8 key bits and 8 plaintext bits.

More precisely, in the first round of the masked AES, the vulnerable inter-
mediate variables are the input byte Z1,j = A1,j ⊗ Y1,j and the output byte
Z2,j = F (A1,j ⊗ Y1,j) of the block implementing the inversion in GF(256). Note
that the data byte A1,j is given as A1,j = Pj ⊕K0,j where Pj and K0,j are the
corresponding plaintext and expanded key bytes, respectively. It follows that

K0,j = Pj ⇒ Z1,j = 0 ⇒ Z2,j = 0. (3)

So, interestingly, it turns out that the (first-order) DPA attack on the masked
AES can be mounted in essentially the same way as on the original AES without
masking, which is described in Section 2. The difference is that one has to target
the all-zero input byte or, equivalently, the all-zero output byte of F . In other
words, for each of 256 possible values of the corresponding expanded key byte
K0,j , the power consumption curves for which Pj = K0,j are extracted and
used for identifying the correct key. To this end, appropriately chosen plaintexts
can reduce the required number of power curves. Since m = 8, the DPA attack
on AES without masking would not be effective, as explained in Section 2.

However, for the masked AES, the DPA attack will be able to distinguish
between correct and incorrect guesses of the expanded key byte, because of the
randomization effect provided by the random multiplicative mask. Observe that
if K0,j is guessed correctly, then the peaks will appear because of the repeated
simultaneous computation of not only the all-zero output byte Z2,j , but also the
all-zero input byte Z1,j . Altogether, the DPA attack may be more effective than
the one on AES without masking, especially if one cannot find an effective way
to simultaneously use more than just one fixed target m-bit value in the DPA
attack on AES, where m < 8, or, more generally, a way to use (possibly optimal)
partitions of power consumption curves into more than just two sets, provided
that the power consumption models are available.

Now, the question is if the described DPA attack can be somehow prevented
by using some other implementation of the multiplicative masking. For exam-
ple, one may try to replace the modified inversion performed on Ai,j by the
modified inversion performed on some nonzero input byte whenever Ai,j = 0,
and then to replace the computed output value by the desired one. However,
detecting whether Ai,j = 0 and replacing the computed output value require
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specific computations that are themselves vulnerable to the DPA attack. In con-
clusion, it appears that the weakness of the multiplicative masking for AES is
hard to remove ideally. Nevertheless, there may exist measures for reducing the
weakness.

Of course, it would be practically important, especially for applications where
the space is very limited, to find another masking method that will not require
the recomputation and storage of S-boxes for every new run of AES. To this
end, one has to use group or, more generally, quasigroup operations for masking
the whole range of possible byte values which would at least simplify the secure
computation and/or storage of F ′ according to (2), where F is the inversion in
GF(256). However, this does not appear to be very likely.

In the next section, we propose an approximate, nonideal solution to the
problem which is based on a random embedding of GF(256) into a larger alge-
braic structure so that the zero value is mapped into a set of values and all the
operations remain compatible with GF(256).

5 Embedded Multiplicative Masking

5.1 Overview of Countermeasure

We represent the field GF(256) as the ring of binary polynomials in x modulo an
irreducible polynomial P (x) of degree 8. Let Q(x) be another binary irreducible
polynomial that is coprime to P (x) and has degree k. Then GF(256) is a subring
of the ring R = GF(2)[x]/(PQ), which is isomorphic to GF(256) × GF(2k),
with the isomorphism U �→ (UP , UQ), where the two coordinates are defined as
UP = U mod P and UQ = U mod Q.

To repair the multiplicative masking described above, we suggest to use the
random mapping ρ : GF(256)→ R defined by

ρ(U) = U + RP (4)

where R is a randomly chosen polynomial of degree less than k (a k-bit word).
Our basic idea relies on the fact that the zero in GF(256) is mapped onto 2k pos-
sible values in R and should hence be more difficult to detect when k increases.
Since ρ(U)P = U , ρ only randomizes the second coordinate, so that choosing
R of degree k or larger and taking the result modulo PQ will not increase the
randomization effect.

Let F ′ : R → R be a mapping defined by F ′(U) = U254. Then, because of
(F ′(U)P , F ′(U)Q) = (U254

P , U254
Q ), F ′ coincides with F on GF(256), and if 7 does

not divide k, then U254
Q is an 1-1 function of UQ, so that F ′ does not deteriorate

the randomization induced by ρ (for k = 7, U509 will do). The embedded mul-
tiplicative masking countermeasure then consists in modifying the data path in
Fig. 3 so that the input data Ai,j ⊕ Xj is mapped through ρ into R, the first
multiplication and two additions are taken modulo PQ, and F ′ is substituted
for F . The second multiplication along the data path and all other operations
involving the additive and multiplicative masks remain the same, that is, modulo
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P . Accordingly, in mathematical terms, the modified method is the same as the
original method with respect to the first coordinate, and the only difference is
in the introduced randomized second coordinate. Here, the k-bit word R essen-
tially acts as an additional mask. Of course, in a secure implementation the two
coordinates should not be computed explicitly.

5.2 Efficient Implementation

As k grows, it quickly becomes difficult to securely implement F ′ using a look-up
table. For k = 8, for instance, 220 bits of (ROM) memory space are required,
which is unacceptable in many practical situations. As a software alternative, it
is possible to evaluate F ′ using the traditional “square-and-multiply” method,
with about 8 squarings and 4 multiplications in R. This solution can be made
more efficient by chosing a specific representation for R, as it is shown now.

Recall that the AES standard specifies usage of the polynomial P0(x) =
1 + x + x3 + x4 + x8 to represent GF(256). The idea is to choose a different
polynomial that is more suitable for performing the multiplication. In particular,
since in GF(2)[x]

1 + x17 = (1 + x)(1 + x3 + x4 + x5 + x8)(1 + x + x2 + x4 + x6 + x7 + x8), (5)

the choice P (x) = 1+x3 +x4 +x5 +x8 instead of P0(x), and Q(x) = 1+x+x2 +
x4 + x6 + x7 + x8, k = 8, yields a particularly efficient encoding. The conversion
between the coordinates in the two corresponding bases is achieved by applying
the linear transformations determined by the 8× 8 binary matrices

M =




1 1 0 1 1 0 0 1
0 0 1 1 0 1 1 1
0 0 1 1 0 1 0 0
0 0 1 1 1 0 0 1
0 0 1 0 0 1 1 1
0 1 1 0 0 1 1 0
0 1 0 0 0 1 1 0
0 0 0 1 1 1 0 0




and M−1 =




1 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 0 0 0 1 1 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 1 1
0 1 1 0 1 1 1 0
0 0 0 1 1 0 0 1
0 1 1 1 1 0 0 1




(6)

with respect to the LSB-first representation. More precisely, the input and out-
put bytes in Fig. 3 should be multiplied as binary vectors (one-column matrices)
by M and M−1, respectively, and the additive mask used should be multiplied
by M , because of M(Ai,j ⊕Xj) = MAi,j ⊕MXj . Note that the output multi-
plication by M−1 restores the same additive mask. In fact, the explicit output
multiplication by M−1 can be avoided by incorporating M−1 into the affine part
of the ByteSub transformation shown in Fig. 2.

Let us look at how multiplication works in R16 = GF(2)[x]/(PQ) (see also
[13]). As all the elements of R16 can be represented as 16-bit words, let U and V
be two words representing two elements of R16, with the LSB-first convention.
We compute W = U ⊗ V in R16 by performing
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W1, W2 ← MULX U, V
W =	W2
W⊕ = W1
IF (W2)0 = 1 THEN W⊕ = FFFF ELSE W1⊕ = FFFF

where MULX denotes the polynomial multiplication, ⊕ denotes the 16-bit XOR
operation, and	 the 16-bit leftshift operation. The last operation W1⊕ = FFFF
is here only to ensure that the code runs in time independent of the input.
Concerning the square operation, let us consider more generally the mapping
si : U �→ U2i

in R16. As U(x) �→ U(x)2
i

mod (1 + x17) = U(x2i mod 17) is
simply a permutation of the coefficients of U(x), si can easily be implemented
in hardware by first permuting the bits of U , considering that the 16th bit of U
is set to zero (this operation requires no logical operations), and then XOR-ing
the result with FFFF if the resulting 16th bit is equal to 1. Hence, computing
si(U) requires basically one 16-bit XOR operation in hardware. In software, si

can be evaluated by using a table look-up, also with a complexity of one 16-bit
XOR.

The total complexity of evaluating F ′ can now be estimated as follows. From
the decomposition 254 = 2(1 + 2 + 22 + 23(1 + 2 + 22) + 26), V = U254 can be
evaluated by using the following sequence of operations :

V ← s1(U)
V ← V ⊗ U
V ← s1(V )
V ← V ⊗ U
V ← V ⊗ s3(V )
V ← V ⊗ s6(U)
V ← s1(V )

with the total cost of four multiplications and five calls to some si. This yields a
total complexity of roughly 4 MULX, 17 elementary 16-bit word operations, and
between 4 and 9 branching instructions. Besides the fact that our method offers
some resistance to DPA, it is much faster than GCD-based algorithms, like the
binary GCD of [8] or a variant of [12], which would require at least about 100
16-bit word operations. It is especially interesting for software implementations
on 16-bit or 32-bit microprocessors as well as for hardware implementations.

5.3 Security Analysis

We consider a power consumption model based on the Hamming weight, that
is, we assume that an attacker has access at any time to the Hamming weight
of the registers of the microprocessor through the power curves. The strategy
of the attacker consists in averaging the Hamming weight of the registers in
order to discriminate between the case ρ(U) = 0 mod P and the case ρ(U) �= 0
mod P . The inversion algorithm presented above involves 25 elementary 16-bit
word manipulations (5 different 16-bit values per multiplication and 1 per si).
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U �= 0 mod P U = 0 mod P U �= 0 mod P U = 0 mod P

8.01562 8.03137 7.59191 7.78039
7.00973 7.27843 6.51737 6.71373
7.92926 8.59608 8.27146 7.8902
8.06434 8.28235 7.50376 7.67059
7.00063 7.10588 6.49996 6.58824
7.98235 7.85882 8.26128 8.33725
8.00197 8.03137 7.48426 7.56078
6.97292 7.0902 6.48111 6.52549
7.92929 8.59608 8.32587 7.95294
8.01562 8.03137 7.49336 7.70196
6.99863 7.3098 6.49944 6.81569
7.99385 7.95294 8.25166 8.20784
8.00083 8.03137

Fig. 4. Average Hamming weight of each 16-bit register used in modified inversion.

Software simulation allows us to compute exactly the average Hamming weight
of each of the 25 registers, as shown in Fig. 4.

Looking at the difference of average Hamming weights between the two cases,
one observes a maximum difference of about 8.5%. This is a convincing empirical
argument that the proposed randomization technique is sound with respect to
DPA, and we emphasize that the security level increases with k. Furthermore, as
the recomputation and storage of S-boxes are not needed, in order to reduce the
vulnerability to higher-order DPA one should use as many mutually independent
masks as practically feasible, especially in the first and the last few rounds. In
particular, the additive masks used in different rounds can be made mutually
independent by using two mutually independent additive masks in the upper
and lower halves of Fig. 3.

6 Conclusions

Although the proposed embedded multiplicative masking countermeasure may
suffice for many applications, a possibly more secure alternative is to use random
binary additive masks and accordingly recomputed S-boxes stored in RAM, for
each new run of AES. In fact, it is proposed in [10] to recompute only one S-box
and use it repeatedly during one execution of AES. In general, if two intermediate
variables both satisfy the fundamental hypothesis for DPA and are masked by the
same mask, then their mutual correlation can be used to mount a second-order
DPA attack similar to the one proposed in [11]. In order to avoid this attack,
the input and output masks for an S-box should be mutually independent.

In principle, increasing the number of mutually independent random masks
increases the resistance against higher-order DPA as well as against more sophis-



Multiplicative Masking and Power Analysis of AES 211

ticated statistical analysis of power consumption curves. If different masks are
generated pseudorandomly, then the security has to be examined more carefully.

With respect to the first-order and higher-order DPA, it is critical to pro-
tect the first and the last few rounds of AES by random masks, whereas the
protection of intermediate rounds may be useful with respect to more sophisti-
cated statistical power analysis. In this regard, it is safer to repeat the masks in
intermediate rounds rather than in the first or the last few rounds.

Even if the same recomputed S-box is used throughout the whole AES, the
(first-order) DPA attack is still prevented as it targets the individual points of
power consumption curves in time. However, such a solution is vulnerable to
a relatively simple second-order DPA attack, especially for implementations in
which the executions of S-box transformations are well separated in time (e.g.,
in software or limited-space hardware).

More precisely, one can identify the execution times of any two S-box trans-
formations in the first and/or the last round of AES, and then compare the power
consumption curves at the two points when the S-box outputs (or inputs) are
computed by using some simple statistic such as the average absolute value or
variance of the difference. The attack is enabled by the fact that the output (or
input) values of the two S-boxes are masked by the same mask. The correspond-
ing two expanded key bytes are guessed simultaneously in order to compute the
two values and the curves are then partitioned according to the bitwise XOR of
these values. To increase the security, it is then desirable to randomize the order
of S-box computations within a round, with preferably mutually independent
randomizations in the first and the last round.
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