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Abstract. A general method to secure cryptographic algorithm implementations against
side-channel attacks is the use of randomization techniques and, in particular, masking.
Roughly speaking, using random values unknown to an adversary one masks the input to
a cryptographic algorithm. As a result, the intermediate results in the algorithm computation
are uncorrelated to the input and the adversary cannot obtain any useful information from the
side-channel. Unfortunately, previous AES randomization techniques have based their security
on heuristics and experiments. Thus, flaws have been found which make AES randomized im-
plementations still vulnerable to side-channel cryptanalysis. In this paper, we provide a formal
notion of security for randomized maskings of arbitrary cryptographic algorithms. Further-
more, we present an AES randomization technique that is provably secure against side-channel
attacks if the adversary is able to access a single intermediate result. Our randomized masking
technique is quite general and it can be applied to arbitrary algorithms using only arithmetic
operations over some even characteristic finite field. We notice that to our knowledge this is
the first time that a randomization technique for the AES has been proven secure in a formal
model.
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1 Introduction

The security of the Advanced Encryption Standard (AES) [32] against Simple (SPA), Dif-
ferential (DPA), Higher Order Differential Power Analysis (HODPA) [16,17], and Timing
(TA) attacks [18] has received considerable attention since the beginning of the AES selec-
tion process. Koeune and Quisquater [19] describe timing attacks against careless imple-
mentations of AES. [4,6,9] discuss DPA attacks on the AES candidates in software based
solutions. Ors et al. [23] describe the first (documented) power analysis-based attack on a
dedicated AES ASIC implementation and Mangard [20] discusses an SPA attack on the key
schedule of the AES. More recently, attacks have used the power of side-channel information
to reduce the complexity of collision attacks on AES [26].

As a result of these attacks, numerous hardware and algorithmic countermeasures have
been proposed. Hardware methodologies were proposed right from the beginning. They
include randomized clocks, memory encryption/decryption schemes, (see [24], [8]), power
consumption randomization [9], and decorrelating the external power supply from the in-
ternal power consumed by the chip. Moreover, the use of different hardware logic, such as
complementary logic [9], sense amplifier based logic (SABL), and asynchronous logic [11,
22] has also been proposed. Some of these methods soon proved to be ineffective while other
more successful countermeasures are very costly in terms of development, area and power.
For example, the techniques in [9, 28,29, 11, 22] require about twice as much area and will
consume twice as much power as an implementation that is not protected against power at-
tacks. In addition, hardware countermeasure will only protect against known techniques and
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attacks. They cannot provide security in some precisely defined mathematical sense. Hence,
although hardware countermeasures are an important defense against side-channel attacks,
they should be complemented by mathematically analyzed algorithmic countermeasures as
well.

In this paper, we concentrate on algorithmic countermeasures against timing and power
attacks on AES. In general, algorithmic countermeasures against timing and power attacks
are based on randomization techniques. Here the problem is to guarantee that all informa-
tion that can be gained via side channels is random and hence useless to the attacker. More
precisely, one has to guarantee that intermediate results of the computation look random to
an adversary. Furthermore, the randomization must be used in such a way that, at the end
of the algorithm, the correct encryption or signature corresponding to the input plaintext
is obtained. Randomized algorithmic countermeasures against timing and power attacks
include secret-sharing schemes, proposed by Goubin and Patarin [13] and independently by
Chari et al. [7] as well as methods based on the idea of masking all data and intermediate
results during an encryption operation, originally introduced by Messerges in [21].

The first algorithmic countermeasure against power attacks customized for the AES
was the transformed masking method [2] by Akkar and Giraud. This method was further
simplified by Trichina et al. [31]. It was noticed in [31,12, 3] that the multiplicative masking
introduced in [2] masked only non-zero values, i.e., a zero byte will not get masked because of
the multiplicative nature of the mask. This feature renders the method of Akkar and Giraud
vulnerable to DPAs. A second masking technique for AES is the random representation
method by Golic and Tymen [12]. Similar to Akkar and Giraud, Golic and Tymen do not
try to show that their technique randomizes all intermediate results. Instead, the authors
only argue experimentally that using their methods the Hamming weights of all intermediate
results are distributed in roughly the same way, independent of the plaintext and secret
key. We conclude that so far customized randomization techniques for AES were based on
empirical assumptions about the power of potential adversaries. Then these assumptions
were used to define some ad-hoc-model in which to analyze and argue the security of the
methods. We believe that this is a dangerous approach. Therefore, in this paper

— We start with a mathematically precise security notion in which we discuss random-
1zation techniques. For our security notion we only make some inevitable assumptions:
First, we assume that some (small) part of the computation runs in a protected envi-
ronment. Secondly, we limit the number of intermediate results that an adversary has
access to. Note that previous methods made at least these assumptions. On the other
hand, we assume that arbitrary differences in the distribution of an intermediate result
that depends on the plaintext or secret key of the cryptosystem can be used to break
the system completely. Accordingly, our security notion requires that the distribution
of any intermediate result is independent of the secret key being used and independent
of the plaintext. In the sequel, we call an algorithm where the joint distribution of
any d intermediate results is independent of the secret key and the plaintext an order
d perfectly masked algorithm. This notion of security strengthens the security notion
proposed in [7] which only required distributions of intermediate results to be indistin-
guishable by an adversary. Since our security notion assumes that even tiny differences
in the distribution of intermediate results completely break a cryptosystem, this notion
is strong and often unrealistic. On the other hand, this assumption guarantees that
algorithms complying with our notion of security will be able to withstand side channel
attacks. In fact, below we argue why our security notion implies security against most
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side-channel attacks. Clearly our notion of security is also motivated and inspired by
Shannon’s notion of perfect secrecy [27].

— Based on this security notion we develop an order 1 perfectly masked algorithm for AES.
Hence the algorithm is secure against any adversary that gets pairs of plain- and cipher-
texts and a single intermediate result for each of those pairs. The main problem here is
to describe a secure algorithm for the inversion operation that is the main ingredient of
the AES SubBytes transformation. Our solution is based on a general technique to turn
an arbitrary algorithm using arithmetic operations defined over some finite field into a
randomized algorithm that securely computes the same function. Our method can be
combined with standard d-out-of-d secret sharing schemes to obtain order d perfectly
masked algorithms for AES. However, at this point the exact costs of this approach are
not clear. Hence we will present these algorithms in a subsequent work.

— Show that masking countermeasures are inexpensive to implement in hardware. The
countermeasures shown here when compared to dual-rail logic type countermeasures
amount to only a 20% increase in the overall area required for an AES hardware imple-
mentation. To show this, we provide a detailed cost comparison of the different methods.
Because our method is based on the usage of multipliers and adders over any binary
field, designers might use this method to implement DPA-safe circuits which utilize
previously designed multiplier and adder blocks. Moreover, the method is modular and
encourages reusability.

The paper is organized as follows. Sections 2 and 3 introduce and discuss our security
notion. In Sect. 5, we show how to compute the SubBytes transformation in the AES in a
way that is provably secure in our model. We finish with a discussion of a possible hardware
implementation of our method and compare its cost with the costs of other (less secure)
countermeasures.

2 Security Notion

In this section we describe our notion of security. To do so, we first need to describe which
attacks we allow and what we consider a successful attack. To simplify the exposition, we
assume that we are given some encryption function enc that we want to evaluate in a side-
channel resistant manner. The inputs to the function enc are a plaintext x and a secret key
k.

Given an algorithm that evaluates the function enc, for each plaintext = and key k,
we view the computation of enc(x, k) as a sequence of intermediate results I1(x,k,r),. ..,
Ii(z,k,r) = enc(x, k). Each intermediate result depends on the plaintext x, on the secret
key k, and some r € {0,1}*. The element r is used to randomize the computation. r is
chosen uniformly at random from {0,1}°. The ciphertext enc(z, k) only depends on z and
k and not on 7.

We consider an adversary that knows plaintext/ciphertext pairs (x,enc(z)). Addition-
ally, we assume that for each pair (z,enc(x)) the adversary gets several intermediate results
Li(z,k,7),...,I4(x, k,r). The adversary may get different intermediate results for different
plaintext /ciphertext pairs. If the adversary can get at most d intermediate results for each
pair (x,enc(x)) of plaintext and ciphertext, we call this an order d adversary. In any case,
the goal of the adversary is to compute the secret key k.

Intuitively, we say that the algorithm computing enc is insecure or that an adversary is
successful, if the joint distribution of the intermediate results that an adversary gets depends
on the plaintext x and on the secret key k. To formalize this, fix some d-tupel Iy, ..., I4
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of intermediate results. For a pair (z,k) of plaintext and key we denote by D, i (R) the
joint distribution of Iy,..., I induced by choosing r uniformly at random in {0, 1}°. This
immediately leads to our notion of security, called perfect masking.

Definition 1 (perfect masking). An algorithm that evaluates an encryption function
enc is order d perfectly masked if for all d-tupels I, ..., 1 of intermediate results we have
that

D,k (R) = Dy y(R)  for all pairs (x, k), (z', k).

For d = 1 we say that an algorithm is perfectly masked.

3 Discussion of security notion

Our notion of security is very strong. Basically, we assume that an adversary can determine
the secret key even from tiny differences in the (joint) distribution of intermediate results.
In many realistic cases this may not be true. However, we do not want to base our security
model on assumptions about technical abilities or limitations adversaries currently have.
Instead we want to provide a precise mathematical notion that captures security against
current side-channel attacks as well as future ones. Our notion of security strengthens the
security notion in [7]. We require that for any two pairs (z, k), (z/,k’) of plaintext and
key the joint distributions Dy ;(R), Dy 1 (R) of d intermediate results induced by these
pairs must be identical. Chari et al., on the other hand only demand that the distributions
D, k(R), Dy i (R) must be indistinguishable by an adversary. As Chari et al. argue in their
paper, if the joint distributions of d intermediate results induced by different plaintext/key
pairs are indistinguishable for an adversary then power analysis and timing attacks using
information about at most d intermediate results cannot be mounted. Clearly, identical
distributions are indistinguishable. Hence, an algorithm that is order d perfectly masked is
secure against timing and power analysis attacks using information about d intermediate
results.

In this paper, we will concentrate on methods to achieve a perfectly masked algorithm
to compute AES. From the discussion above it follows that the perfectly masked algorithm
for AES that we describe is secure against timing and power analysis attacks using a single
intermediate result. As can easily be seen, our algorithm is not secure, if an adversary has
access to two or more intermediate results. Notice that most countermeasures proposed so
far, also assume an adversary with access to a single intermediate result (see [2,12,30]).
Finally, let us mention that combining d-out-of-d secret sharing schemes with our techniques
to mask intermediate results, one can achieve algorithms for AES that are order d perfectly
masked. However, at this point the costs in terms of randomness and hardware resources
of these algorithms have not been determined exactly.

Notice that without further assumptions even an perfectly masked algorithm is impossi-
ble. To see this, note that the secret key k itself can be considered as an intermediate result.
This intermediate result clearly does not satisfy the condition stated in Definition 1. Hence,
to achieve a perfectly masked algorithm we must assume that some parts of the computation
run in a guaranteed secure environment. In other words, some intermediate results cannot
be accessed by an adversary. At least implicitly, all previously proposed countermeasures
against side-channel attacks have made the same assumption. Clearly, our goal has to be
to design perfect maskings that require only few intermediate results to be inaccessible by
an adversary. Moreover, we must be able to identify those intermediate results that have
to be computed in a secure environment. Note that on modern smartcards, protected by
different sensors and encrypted memories, the assumption that at least some computations
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are done in a secure environment is realistic. Like all other countermeasure, we also assume
that we have a true random number generator (TRNG) and that the adversary is not able

to manipulate the random bits. Schematically, these assumptions are shown in Figure 1.
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Fig. 1. Schematic view

So far we have been talking of intermediate results without specifying what we consider
as possible intermediate results that an adversary may get. We consider an algorithm as a
sequence of operations that are treated as encapsulated modules. This leads to a classifica-

tion of intermediate results into different levels down to the bit level:

1. Text level: The whole algorithm is treated as a module. This level is the one of classical

cryptography. The only information available to the adversary is the plaintext and the
ciphertext.

. Block level: Each part or subroutine of the algorithm is treated as a module. In the case
of a block cipher such as the AES, each transformation within a round is treated as a
module (SubBytes, ShiftRows, MixColumns and AddRoundKey).

. Unit level: Each arithmetic operation is treated as a module. These operations work on
the atomic units of information in the cipher. For example, the AES units of information
are bytes; no operation acts on bits or nibbles. In hardware terms this level is based on
the contents of registers.

. Bit level: Each bit manipulation is treated as a module, for example XOR, shift etc. A
bit is the smallest possible portion of information and hence security in this level is the
best possible.

Every output of such a module is an intermediate result. In this paper we concentrate on

intermediate results at the unit level. For AES this seems to be a natural choice. Basically
all operations in AES are arithmetic operations on bytes. Therefore timing, power and fault

attacks on AES have focused on these operations as well (see for example [19], [5]).

4 Additive Masking and the AES

In [21], Messerges introduced the idea of masking all intermediate values of an encryption
operation as an effective countermeasure against DPA and SPA type attacks. Randomizing

the computation of a function f is, thus, achieved as f(u') where &' = u + r and r is a
randomly chosen mask. If the function is linear, one can recover the desired value f(u

)

from f(u') = f(u)+ f(r). A similar computation will recover f(u) if the function f is affine.
For non-linear functions, the previous equation does not hold true and it is necessary to



6 Johannes Blomer, Jorge Guajardo Merchan, and Volker Krummel

come up with a series of computations dependent only on r and u’ such that we obtain
the value of f(u) without leaking any information. [21] suggested to combine both Boolean
(logical XOR operations) and arithmetic masks (for example, multiplication and inversion
in Fon, multiplication and addition modulo 232, etc.) since the AES candidates combine such
operations and, then, use algorithms to convert between Boolean and arithmetic masks in
a secure manner.

We notice that in the case of the AES [32], the only non-linear function in the algorithm
is the AES SubBytes transformation. In particular, most researchers have concentrated their
efforts on efficient methods to perform inversion over Fo56 in a secure manner via masking
countermeasures, i.e., computing w4+ r from u 4 r without compromising the value of u.
In this context, three masking methods have been proposed: two of them [2,12] are based
on the idea of combining Boolean and multiplicative masking operations and the third one
is based on the idea of masking the individual logic operations required to compute a Fos4
inverse. A simplification of [2] was introduced in [31] but it has been recently found in
[1] that the simplifications lead to further vulnerabilities against DPA. Thus, we do not
consider it any further in this work. In the following, we shortly summarize the previously
mentioned countermeasures.

The Transform Masking Method (TMM). In [2], Akkar and Goubin introduce the
Transform Masking Method (TMM) and algorithms to transform between boolean mask
(XOR operation) and multiplicative masking (multiplication in Fas6) which is compatible
with inversion in Faos6. [2] solves the problem using Algorithm 1, where 79 is a non-zero
random value and all variables and results are 8-bit long. Moreover, as noticed in [31, 12,

Algorithm 1 Transform Masking Method

Input: v =u+ry, ro
Output: v +ry

1: t1 «—u -ro;tg «— 11 - 7o {t1=(u+r1)-r2}
2: t1 <—t1+t2;t3<—r271 {tl :u~r2}
3: t1 <—t1_1;t2<—t3~7‘1 {tlz(u~T2)_1;t2:T1~’r’Q_1}
4ty —t1 +to {tr=(u-r2) P+ (r1 -5 )}
5:t1 «—t1-19 {t1:u71+7’1}

3], this countermeasure is susceptible to first-order DPA if u = 0 because zero cannot be
masked with a multiplicative mask. It is clear that because of the special nature of the zero
value, multiplicative masking cannot lead to perfect masking.

Embedded Multiplicative Masking (EMM). The basic idea in [12] is to embed the
field Fa56 in the ring Ry = Falz|/(pq) = Fase x For, where ¢ is another irreducible poly-
nomial co-prime to p of degree k. The field Fos6 is now a subfield of the ring Ry with the
isomorphism defined by v — (vp,v,), where v, = v mod p and v, = v mod ¢. [12], then,
suggests to use a random mapping pi defined by v — v+ rp mod pq and modified inversion
I' defined as v?** mod pq, where r is a randomly chosen polynomial of degree less than
k. In this way, arithmetic operations remain compatible with Fos56 and the zero value gets
mapped to one of 2¢ random values. It is, thus, harder to detect the zero value as k be-
comes larger. From a security point of view, however, the approach in [12] does not yield
perfect masking since the sets of representatives of different values are disjoint. From an
implementation point of view, we show in Section 6.2 that this method is too expensive to
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implement in hardware. This is important since our methods can be implemented with less
than half the hardware resources and, at the same time, yield perfect masking.

Combinational Logic Design for AES S-box on Masked Data. To the authors’
knowledge, Trichina [30] is the first to consider embedding a masking countermeasure di-
rectly in hardware. [30] allows for a modified inversion function which on input w + rp
outputs u~! 47, where r; and 73 need not be the same. In addition, [30] reduces the mask-
ing problem for inversion in Fqr to the problem of masking a logical AND operation since
masking XOR operations is, in principle, trivial. In particular, given masked bits v’ = u+ry,
v = v +ry and corresponding masks r1, 73, we compute (u Av) + r3, where rs is the output
mask. This can be accomplished according to [30] as:

(uAv)+r3=(uAv)+ (r1 Arg) = (' AV) + ((r1 AV) + (ro A ) (1)

where the parenthesis indicate the order in which intermediate results are computed. Equa-
tion (1) implies that we can compute the AND operation of two bits u, v without using the
actual bits but rather their masked counterparts u’,v" and corresponding masks r1, 9. We
notice that if u = v = 0, the intermediate value (11 A V') + (12 A ') is always equal to zero
for any value of 1 and ro. This implies that (1) does not lead to perfect masking. [30] also
introduces as a ”far better” solution the following implementation:

(uAv)+ry=(u AV)+ (((1"2 Au) 4+ ((r1 Are) + 1“3)) + (r1 A v')) (2)

where r3 is a third mask and independent of 1 and ro. However, [30] does not provide any
formal treatment of security or argument as to why one masking methodology might be
better than the other.

5 Perfectly masking AES against first order side channel attacks

As mentioned before, in order to obtain a perfectly masked algorithm for AES we concen-
trate on the problem of computing multiplicative inverses in Fo56 because

x~ b if x € T
INV(w) = { 0, itz =0

is the main step of SubBytes. In this section we present an algorithm that is secure against
an adversary that is able to get one intermediate result. However this solution can easily
be generalized to higher order attacks by using more randomness. Moreover our method
is quite general and hence with appropriate modifications for fields of odd characteristic
applicable to an arbitrary finite field.

Let 7,7’ be independently and uniformly distributed random masks. We start with an
additively masked value u + r and would like to calculate INV (u) 4+ r’. However a direct
application of INV leads to INV (u+r) that is of no use to us because of the non-linearity
of inversion.

5.1 Idea

The basis of our idea is to calculate INV (x) as 22%* by using the square-and-multiply
algorithm or an optimal addition chain. In general the multiplicative inverse of an element
over an arbitrary finite field F,= can always be calculated by raising it to the (p™ — 2)-
th power. This can be efficiently done using only squarings and multiplications. Since our
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inputs are additively masked values (u + r) we correct the result of every single operation
in the square-and-multiply algorithm in order to obtain the desired result. Our invariant is
that at the end of each step our result has the form (u®+1’) for some e. Hence, the problem
is to correct the intermediate results without revealing any information about u.

5.2 Method

We introduce some variables: We name r;; the jth random mask used in Step ¢ of our
algorithm. All r;; are independently and uniformly distributed masks. The direct result of
an operation (squaring or multiplication) in Step ¢ performed on some masked values is
called f;. Furthermore, we need the auxiliary terms s1; and so; to correct f;. The variable
t1, is the intermediate result that appears during the correction and ¢; is the final result of
Step ¢ which complies with our invariant, i.e., it is of the form u® + 7 ; for some e.

The input to our modified inversion algorithm is the masked value (v + 71 ). Next, we
describe how to perform multiplications and squarings in a perfectly masked manner. The
security analysis is shown in Sect. 5.3. We distinguish between squaring and multiplication
because the former can be done more efficiently.

Squaring. The squaring operation in Step ¢ is described in Algorithm 2. The input t;_1 =
u®+11,i—1 is squared in Step 1. In order to compute the output that respects our invariant
we have to change the mask to r1 ;. To do so in Steps 2 and 3 we use the auxiliary term s1;
and compute the desired output t; = u?¢ + Tl

Algorithm 2 Perfectly Masked Squaring (PMS)

Input: v =u® 4711
Output: u2¢ + r1,4

1: fi — a2 {fl :u2€+rii71}
2! 51,4 — T%’i_l + 71 {auxiliary term to correct f;}
3ty — fi+s14 {t; = u?® + 11}

Multiplication. Our perfectly masked multiplication method is described in Algorithm 3.
The input are two intermediate results: The output of the previous step and a freshly
masked value derived by securely changing the masked value from u + 710 to u + r9;. In
Step 1 we calculate the product f; of two intermediate results. f; contains the desired power
of u as well as some disturbing terms. In Steps 2-5 we compute the auxiliary terms s;; and
s2,i. In the end (Steps 6 and 7) we eliminate the disturbing parts of f; and transform it
according to our invariant. This is done by simply adding up the two auxiliary terms s1,
s9; and f;.

Algorithm 3 Perfectly Masked Multiplication (PMM)

Input: z =uf+71,;-1,2 =u+ra;
Output: u*t! + 7y,

1: fi—x- -2 {fi=ut +u® ro;+u-ri 41 +7r14-1 72,4}
2t vy = r i {vii=u-r1i-1+71,i-1-72,i}
3: vo — v+ T {wvoi=u-rii-1+r,i—1-7r2:+71,:}
4: 51,4 v+ r1i-1 T2 {s1,i =u-71,5—1+71,i}
5 so4 — -T2y {s2,i =wu® ro;+rii—1 72}
6: t1,— fi+s14 {tii=uetl 4+ ro;+ri i1 -ro;+71,:}
Titi —t1,i+ 52, {ti = w411}

The complete computation to obtain INV (u) + r’ in Fosg is shown in Table 3 in the
Appendix. The output of the last operation is u?** + r1,13 = INV(u) + 71,13 which is the
desired value, as required.
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5.3 Security Analysis

As defined in our security model we have to look at all intermediate results. For Algorithms
2 and 3 we only have to analyze the distributions of the following intermediate results:
fir 81,0, 52,0 tir t1,i, V1,4, v2,; where 1 < ¢ < 13. These are the results that depend on u. We
can neglect intermediate results such as 'r%i since they do not depend on wu.

Our security analysis is based on the following 2 lemmas that characterize the distribu-

tions of intermediate results.

Lemma 1. Let u € Fosg be arbitrary. Let r be uniformly distributed over {0,...,255}
independent of u. Then I(u,r) =u+r = Z is uniformly distributed.

Lemma 2. Let u,u’ € Fosg and r,7’ € Fas6 be independently and uniformly distributed
over {0,...,255}. Set I = u+r and Iy = v +71'. Then the product Z = I - I is distributed
according to

511 255 255 ... 255

DO:[O 1 2 ...255}

o [@Y=1)/218 ifi=0
Pr(z=1) = {(28—1)/216 Vifi £ 0

The proofs of these lemmas are straightforward and therefore omitted. For our security
analysis we also need the following observation.

Remark 1. In any finite field of characteristic 2 squaring is a one-to-one mapping.

Analysis of f; We have to look at the intermediate result f; in the two cases of squaring
and multiplication.

— Squaring: The calculation is f; « 2 | = u?® + 7“%,1'71 for some 2 < e < 254. Since
71,i—1 is chosen uniformly at random, Remark 1 together with Lemma 1 shows that f;
is uniformly distributed for all .

— Multiplication: f; — (u®+ri;—1) - (u+7r2;) = utt - ulry +ury o1 + T1,i—172,. Here
the terms u® + r1 ;-1 and u + rp; are independently (because of the independence of
r1,i—1 and 72;) and uniformly distributed (Lemma 1). So by Lemma 2, f; is distributed
according to Dg for all u.

Analysis of 51,52

— Squaring: Here s1; can be neglected since it does not depend on wu.

— Multiplication: sq; is calculated by adding or multiplying independent masks on the
term (u+72,;) leading to the term ury ;—1+71 4. So s1; is obviously uniformly distributed.
s2,i < (u®+171,i—1)re, is the product of two independently uniformly distributed vari-
ables each of which is distributed independently of u. So independent of the value of w,
the variable so; is distributed according to Dy.

Analysis of t1;,t; All these intermediate results are sums of some part depending on u
and an independent additive mask. So all of them are uniformly distributed by Lemma 1.

Hence corresponding intermediate results are always identically distributed independent
of the value of w. This implies that the whole computation is perfectly masked.
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5.4 Simplified version

Previously we assumed that for each step we generate new random masks. In the special
case of first order side channel attacks we can reuse random masks because the adversary is
allowed to choose only one intermediate result. Thus, we can reduce the number of random
masks needed to only three masks (r1,72,73). To achieve this we modify our calculations
such that after each step we switch back to our original mask. This can be done by simply
adding our original mask and then adding our temporarily used mask. Because of the
independence of the masks this has no impact on security. The complete computation with
the additional intermediate results (t2,?3;) needed for this extra calculation is shown in
Table 4 in the Appendix.

6 Implementation and Costs

Throughout the paper, we have only considered a theoretical implementation of the in-
version algorithm according to the square-and-multiply algorithm. However, our method is
compatible with any implementation that combines additions, multiplications, and squar-
ings in a field or ring. More precisely, an arbitrary straight-line program over some finite
field using only additions and multiplications can be transformed to an equivalent program
that is perfectly masked. In this work, we do not consider software implementations of the
presented countermeasures. However, we notice that for constrained environments previous
works have based their software implementations of side-channel countermeasures on table
look-ups. The efficient implementation of the randomization techniques presented in this
paper in such environments remains an open problem. From a hardware point of view,
the most area efficient ASIC hardware implementation is the one described in [25] based
on composite fields. We will discuss an implementation of our countermeasure based on
composite fields in the next section.

6.1 Efficient Hardware Implementation over GF(((22)?%)?2)

First we describe in some detail how to implement an inverter over GF(((22)?)?), so that it
is clear how we obtained our area and delay estimates. This methodology is nothing new and
it is well known in the literature.We assume a composite field representation G F(((22)?)?) =
Fa56 for the inverse transformation using the following irreducible polynomials:

GF(2?) :P(x)=2+2+1, Pla)=0
GF((2°)) Q) =y*+y+a, QB)=0
GF(((22%)?) *R(z) =2 42+ A=(a+1)3

We use the PMM and PMS algorithms from Sect. 5 instead of the normal ones to build our
inversion circuit and, thus, render it secure against side-channel attacks. Based on [15, 14],
[25] notices that for A € GF(((22)%)?), A~! can be computed as A~ = (A'7)~1 A6 where
A € GF((2%)?). Notice that the Itoh and Tsujii algorithm can be recursively applied to
B = A" € GF((2%)?), thus obtaining B~! = (B*- B)~! - (B*) where B®> € GF(2?). In the
following, we write B = B13 + By € GF((2%)?) with B; € GF(22). Then, we can minimize
the area requirement of the implementation using the following ”tricks”:

— B* € GF((2%)?) can be computed as B* = B13+ (B + By), i.e., only one addition over
GF(2?).

— B’ € GF(2?) can be computed as B> = By - By + B2 + B? - a, where B? - a requires
only wires for its implementation (no gates).
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— Given C = cia+¢g € GF(2?), C7! = cia+ (c1 + ¢p), i.e., it requires one GF(2) adder.

— Thus, computing B~! = B=5. B* € GF((2%)?) requires 3 GF(2?) multipliers, 1 GF(2?)
squarer, and 4 GF(2%) adders. Inversion in GF(((22)?)?) can then be implemented
according to [25] with 2 adders, 3 multipliers, 1 inverter, and 1 squarer followed by
multiplication by A = (a + 1)3, all over GF((2%)?).

The hardware implementation of the side-channel attack safe version can be implemented
similarly except that now instead of using the normal adders, multipliers, squarers, and
inverters, we use circuits which implement the algorithms from Sect. 5.

6.2 Cost and Comparison to Previous Countermeasures

Area and delay estimates for circuits with and without countermeasures are provided in
the appendix. The estimates are given in terms of the area and delay of 2-input AND
gates, 2-input XOR gates, and NOT gates. The complexity and specific implementation of
these circuits is taken from [33]. In addition, we provide complexity estimates in terms of
normalized area and delay. The normalization is done with respect to the area and delay
of a NOT gate. We have assumed that the areas of a 2-input AND gate and 2-input XOR
gate are twice and 3 times that of an inverter, respectively. Similarly, it is assumed that the
delays of NOT, AND, and XOR gates are equal. Notice that the assumptions regarding the
gates’ area and delay are not arbitrary but based on the actual sizes of several standard
cell libraries. Finally, we point out that [25] which describes AES ASIC implementations
over GF(((2?)?)?) does not provide the actual circuits used to implement the AES S-box.

Table 1 provides a cost comparison among the different masking countermeasures. Ta-
ble 2 summarizes the estimated hardware cost of the different countermeasures in the lit-
erature including the one presented in this paper. We did not considered the method from
[12] because its hardware implementation requires too many hardware resources. We can
estimate the cost of [12] with k& = 8 by simply considering the cost of a multiplier and
an inverter over Fao[z]/(pq) = Fase X For. According to [10], such a multiplier requires 289
2-input AN D gates and 272 2-input X OR gates. The map I’ can also be implemented with
a multiplier (a squarer requires only wires) for its implementation. Thus, we would need
at least 1 multiplier and 1 inverter over Fo[z]/(pg) and 3 multipliers and 1 inverter over
Fo56. This results in a circuit which requires at least 731 AND and 766 XOR5 or about
twice as many gates as our method. We can see from Table 1 that the countermeasure of

Table 1. Hardware cost comparison for different inversion circuits with side-channel countermeasures.

[Arithmetic Operation [ A JA/ANormal Inv. | T]T/TNormal Inv.]A T
Inversion over GF(((2%2)%)2) [25] 312 1 17 1 1
Inversion with DPA countermeasure from [30] ac-[1071 3.4 26 1.5 5.3
cording to (1)

GF(((2%)%)?) PM inverter (this paper) 1704 5.5 21 1.2 6.7
Inversion with DPA countermeasure from [30] ac-[1341 4.3 34 2 8.6
cording to (2)

Inversion with countermeasure from [2] 1784 5.7 34 2 11.4

[30] implemented according to (1) has the best area/time product of all the implementa-
tions. However, as we have shown in Section 4, this countermeasure is susceptible to DPA
attacks if the input byte is zero and, thus, it does not provide perfect masking. If we then
consider the best area/time product of the countermeasures that offer DPA resistance, the
implementation presented in this work has the best area/time product. This result comes
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from the reduced critical path in the circuit presented here. In addition, our design encour-
ages re-usability of previously designed blocks. In other words, since the masking method
depends only on multipliers and adders, if one has multiplier and adder blocks already
designed, they can be used immediately to build a perfectly masked circuit (with the work
from [30], implementation of the masking countermeasure would require a complete circuit
redesign). Finally, we estimate the cost that our masking countermeasure would have on
an AES hardware implementation. To do this, we assume that the implementation would
follow the architecture described in [25] where the SubBytes transformation occupies about
22% of the design with 4 S-Boxes in parallel. Of this the inverse transformation accounts
for 60% or about 14% of the total area. We also assume that the remaining circuits require
twice as much area as an implementation without masking countermeasures. Then, our new
inversion circuit would need about 2.5 times the area that an AES hardware implementa-
tion without countermeasures would need. Of this 31% would correspond to the inverter
circuit. The required area is only 20% larger than an implementation that used hardware
countermeasures based on the usage of different hardware logic. Such methods double the
hardware resources when compared to an implementation using standard (single-rail) logic.

6.3 Other Costs

In addition to time and area, other costs are also of importance. For example, the amount
of randomness is very important since its generation is quite expensive. In out simplified
algorithm we only need 3 random masks in order to compute INV(x) in a secure manner.
Another important cost factor is the number of operations that have to be protected by
hardware means. Our approach needs this inevitable protection only for one intermediate
result. Hence it is optimal with respect to this cost measure.

7 Conclusions and Recommendations for Further Research

In this paper, we have proposed a formal model in which masking countermeasures can be
analyzed. Furthermore, we have proposed methods which are provable secure in our model
if the adversary is limited to accessing a single intermediate result during the algorithm
computation. A natural way to extend this research is to consider more powerful adversaries
which can access more than one intermediate result at the time and develop methods which
would withstand such attacks. Here a major challenge is to design methods which are
”practical”, in the sense, that they can be implemented at a reasonable hardware cost.

Another interesting question is to see whether for less powerful adversaries secure algo-
rithms exist that require less randomness and / or are more efficient than the algorithms
presented in this paper.

We have also considered the implementation of perfect masking from a hardware point
view. An interesting avenue for further research would be to consider the efficient imple-
mentation of such countermeasures in software and what tricks can be used to improve
its memory requirements and performance. Another question is if we can find more area-
efficient methods to implement side-channel attack safe circuits for the AES. We believe
that, using masking methodologies, the best we could hope for is to use twice as much
area as a circuit without countermeasures (imagine simply that the circuit could be imple-
mented using only XOR gates). Is this bound possible to achieve in practice. Related to
this last question is the need for random masks, can we reduce the randomness requirement
without affecting security. Notice for example that [31], effectively reduced the randomness
requirement of the countermeasure presented in [2], but it was found later in [1], that such
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reduction made the implementation in [31] DPA susceptible. Thus, security should always
be kept as the main evaluation criteria when implementing ciphers on different platforms,
hardware or software.
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A Tables

Table 2. Hardware cost for different inversion circuits with and without countermeasures

Arithmetic Operation I Area Complexity |N0rm.| Time Complexity INorm.
[AND3;[XOR2[NOT| Area [TyNpD,[Tx0R,[INOT| Delay
GF(((2%)2)?) multiplier with P(z), Q(y), and R(z)| 36 70 — 282 1 6 — 7
Inversion over GF(((2%)%)2) [25] 45 73 3 312 4 13 1 18
Inversion with countermeasure from [2]: 250 426 6 1784 6 27 1 34
Inversion with DPA countermeasure from [30] ac-| 180 236 3 1701 4 21 1 26
cording to (1):
Inversion with DPA countermeasure from [30] ac-| 180 326 3 1341 4 29 1 34
cording to (2):
GF(2%) PMM (this paper): 16 26 - 116 1 5 - 6
GF((2%)%) PMM (this paper): 48 100 — 396 1 7 — 8
GF((22)%2) PM inverter (this paper): 48 116 — 444 2 13 — 15
GF(((2%)%)?) PM inverter (this paper): 192 | 440 — 1704 3 18 — 21

Table 3. Calculation of (u?** + rq,13) using square-and-multiply

i Op fi S1,4 S2,4 t1,i ti

i
1 (S) u? + 7"%,0 7‘%,0 + 71,1 u? + 1,1
2 M| w2+ (utre2) | urig +re ulrg o + 711722 ud fulro o+ riare e + 12 ud o
3 (S) ub 47, rfo+rs uS 713
4 (M| WS +ri3)(utrea) | uris+ria uSro 4 + 713724 uT +ubro a4 +riaroa + 114 w1
5 (S) 'u.14+7‘i4 r%y4+7‘115 u14+rly5
6 (M)|| (u +r15)(u+ra6) |uris+rie | ultras+risrae ul® +ultry 6+ 715726 + 716 uwl® +ry 6
7 (S) w30 4 Ti6 T%,G + 71,7 w30 4 1,7
8 (M)|| (w3 +ry )(utres) | urir+r1,s | ulrag+r17ros w3l 4 305 g 41y 7ro 8 + 718 udl 4ry g
9 (S) ub? 4 7‘%,8 18t 71,9 w62 4 1,9
10 (M)|| (u® + 77 g)(u+r210) [uri0+ 7110 | w9210 + 71,072,100 | v +urg 10 + 7107200 F 7100 [ w0 + 110
11 (S) ul26 4 7‘%10 7‘%10 + 71,11 ul?6 4 1,11
12 (M) [|(ut?6 + r1 11) (u + r2,12) [urt 11 + r1,12|ut070 10 4+ 71 1172,12|w?7 + ul26ry 10 + 71 1170 12 + 112 |6l e 10
13 (S) w254 + T%,12 T%,l? +r1,13 u?254 + 71,13

Table 4. Calculation of (u*** + r;) using square-and-multiply (simplified version)

i Op fi S1,i 52,0 t1,i t2,i t3.i ti

1 (S) u? + ’l‘% 7‘% + 71 u? 4+ 7y
2 (M) (u2+7‘1)(u+'r2) ury +r3 u?rg 4+ riro ud + ulrg + rire + 73 wtrs w4 rg+r | w4
3 (8) ub + r% 7‘% +ry w5 + 7ry
4 (M| W +r)(u+r2) |ury +r3 ulro +rimo u” + uSrg + rire + 73 wtrs uw4rs+r | w4+
5 (9) ul? + r% 7‘% +ry wl? + rq
6 (M)|| (u'* + 71)(u+r2) |ury + 73 wrg +riro | w'® 4wy 4 rirg +rs w!® g wl® g 4y 15 4 ry
7 (9) u30 4 r% r% + 30 4y

9 (S) w62 + r% 7'% +ry
10 (M) (u62 + 'r2)(u + 7o) |ury + r3 u627‘2 + rirg ub3 4+ 'u.62'r2 +rirg + 13 ub3 4 T3 w3 4 r3 + 711
11 (S) u1261 + 7‘% 'r% +r u
12 (M) (u126 + 7r1)(u + ro)|ury + r3 u126r2 + rirg w27 4 u1267‘2 +rirg + 13 w'?27 4 3 w27 4 r3 + 11 w27 4 r1
13 (S) w254 + 7‘% 'r% + 71 u

u
u

8 (M)|| (u3° + r1)(u+ra) |ury +r3 u30ry +rire | w3t +u3%rg 4+ rirg + 13 w3 43 W3l fr3 g W3 4y
u
u




