
Statistical Analysis of Second Order
Differential Power Analysis

Emmanuel Prouff, Matthieu Rivain, and Régis Bévan

Abstract—Second order Differential Power Analysis (2O-DPA) is a powerful side-channel attack that allows an attacker to bypass the

widely used masking countermeasure. To thwart 2O-DPA, higher order masking may be employed but it implies a nonnegligible

overhead. In this context, there is a need to know how efficient a 2O-DPA can be, in order to evaluate the resistance of an

implementation that uses first order masking and, possibly, some hardware countermeasures. Different methods of mounting a

practical 2O-DPA attack have been proposed in the literature. However, it is not yet clear which of these methods is the most efficient.

In this paper, we give a formal description of the higher order DPA that are mounted against software implementations. We then

introduce a framework in which the attack efficiencies may be compared. The attacks we focus on involve the combining of several

leakage signals and the computation of correlation coefficients to discriminate the wrong key hypotheses. In the second part of this

paper, we pay particular attention to 2O-DPA that involves the product combining or the absolute difference combining. We study them

under the assumption that the device leaks the Hamming weight of the processed data together with an independent gaussian noise.

After showing a way to improve the product combining, we argue that in this model, the product combining is more efficient not only

than absolute difference combining, but also than all the other combining techniques proposed in the literature.

Index Terms—Embedded systems security, cryptographic implementations, side-channel analysis, higher order differential power

analysis.

Ç

1 INTRODUCTION

SIDE-CHANNEL analysis (SCA) exploits information that
leaks from physical implementations of cryptographic

algorithms. This leakage (e.g., the power consumption or the
electromagnetic emanations) may indeed reveal information
on the secret data manipulated by the implementation.
Among the SCA attacks, two classes may be distinguished.
The set of so-called Profiling SCA corresponds to a powerful
adversary who has a copy of the attacked device under
control and who uses it to evaluate the distribution of the
leakage according to the processed values. Once such an
evaluation is obtained, a maximum likelihood approach is
followed to recover the secret data manipulated by the
attacked device. The second set of attacks is the set of so-called
Differential Power Analysis (DPA) [1]. It corresponds to a more
realistic (and much weaker) adversary than the one con-
sidered in Profiling SCA, as the focused adversary is only able
to observe the device behavior and has no a priori knowledge
of the implementation details. This paper only deals with the
set of DPA as it includes a great majority of the attacks
encountered, e.g., by the Smart Card Industry. For further

information about Profiling SCA, the different studies
conducted, for instance, in [2], [3], [4] may be read.

A DPA is a statistical attack that correlates a physical
leakage with a prediction on the values taken by one or
several intermediate variable(s) of the implementation that
depend on both the plaintext and the secret key (such
variables are called here sensitive variables). To avoid informa-
tion leakage, the manipulation of sensitive variables must be
protected by adding countermeasures to the algorithm.

A very common countermeasure to protect block ciphers
implementations is to randomize their sensitive variables by
masking techniques [5], [6]. All of these are essentially based
on the same principle which can be stated as follows: every
sensitive variableZ is randomly split intod sharesM1; . . . ;Md

in such a way that the relation M1 ? . . . ?Md ¼ Z is satisfied
for a group operation ? (e.g., the X-OR or the modular
addition). Usually, the d� 1 shares M1; . . . ;Md�1 (called the
masks) are randomly picked up and the last oneMd (called the
masked variable) is processed such that it satisfies M1 ? . . . ?
Md ¼ Z. This technique is usually called a ðd� 1Þth-order
masking. When it is applied to protect the software imple-
mentation of an algorithm, the elements M1; . . . ;Md are
manipulated at different times t1; . . . ; td and an attacker needs
to get information on all of them if he wants to get information
on Z. The class of Higher Order DPA (HO-DPA) attacks have
been introduced to defeat this kind of countermeasures.

When a ðd� 1Þth-order masking is used, a dth-order DPA
can be performed by combining the leakage signals
Lðt1Þ; . . . ; LðtdÞ resulting from the manipulation of the
d sharesM1; . . . ;Md. This enables the construction of a signal
that is correlated to the targeted sensitive variable Z. Such an
attack can theoretically bypass any ðd� 1Þth-order masking.
However, the noise effects imply that the difficulty of
carrying out an HO-DPA in practice increases exponentially
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with its order [5], [7]. On the other hand, the design of a
higher order masking scheme that is efficient and secure
against dth-order DPA for d � 2 is still an issue [8]. Therefore,
first order masking (together with hardware countermea-
sures) is widely used to protect block ciphers implementa-
tions against DPA [6], [9], [10].

In this context, second order DPA have been widely
investigated [5], [7], [11], [12], [13], [14], [15], [16]. Mainly, two
combining functions have been proposed to mount sound
second order DPA attacks against masked implementations.
The first one, proposed by Chari et al. in [5], simply consists of
processing the product of the two leakagesLðt1Þ andLðt2Þ (in
the sequel we call it the product combining). The second one,
proposed by Messerges in [11], consists of computing the
absolute value of the difference between Lðt1Þ and Lðt2Þ (we
call it the absolute difference combining). Recently, a formal
analysis of these combining functions has been initiated. In
[13], Joye et al. analyzed the single-bit second order DPA (that
is, the DPA targeting a single bit of the sensitive data) based
on the absolute difference combining and they proposed a
way to improve it. In [7], Schramm and Paar analyzed the
multibit second order DPA based on the product combining.
Although these separate analyses allow to better understand
the drawbacks and the assets of each of these combining
functions, they do not allow to clearly establish which
approach is the most suitable. In [16], Oswald et al. compared
the two combining functions by evaluating some correlation
coefficients in a noise-free model. Based on their results, they
argued that the absolute difference combining is more
efficient than the product combining. However, the limitation
of the leakage model used in [16] does not allow to draw
definitive conclusions.

In this paper, we conduct an in-depth analysis of an HO-
DPA attack that involves a combining function and target
software implementations of cryptographic algorithms. We
define a theoretical framework in which the efficiency of
such an HO-DPA can be measured and optimized once the
combining function has been chosen. Then, we analyze both
the product combining and the absolute difference combin-
ing according to a realistic leakage model (namely the
Hamming Weight model with noise) and we show how the
efficiency of the product combining can be improved by
preprocessing the leakage measurements. Our analysis
states that this improved product combining leads to the
best efficiency. We also argue that this function is the best
published function to perform a second order DPA when
devices leak the Hamming weight of the processed data and
when the noise is nonnegligible.

2 PRELIMINARIES

2.1 Notations and Useful Definitions

We use the calligraphic letters, like X , to denote finite sets
(e.g., IFn

2 ). The corresponding large letterX is used to denote a
random variable over X , while the lowercase letter x a
particular element fromX . The probability of the event ðX ¼
xÞ is denoted by P X ¼ x½ � or pXðxÞ. The uniform probability
distribution over a setX is denoted byUðXÞ and the gaussian
probability distribution with expectation � and standard
deviation � is denoted as Nð�; �Þ. The expectation of X is
denoted by E X½ �, its variance by Var X½ �, and its standard

deviation by � X½ �. The correlation coefficient betweenX and
Y is denoted by � X; Y½ �. It measures the linear interdepen-
dence between X and Y and is defined by

� X; Y½ � ¼ Cov X;Y½ �
� X½ �� Y½ � ; ð1Þ

where Cov X;Y½ �, called covariance of X and Y , equals
E ðX � E X½ �ÞðY � E Y½ �Þ½ � or E XY½ � � E X½ �E Y½ � equivalently.

The empirical version of the correlation coefficient is the
Pearson coefficient:

b� < x1; . . . ; xN >;< y1; . . . ; yN >ð Þ

¼
PN

j¼1ðxj � xÞðyj � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1ðxj � xÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1ðyj � yÞ
2

q ;
ð2Þ

where < x1; . . . ; xN > (resp. < y1; . . . ; yN > ) denotes a
sample of N values taken by X (resp. Y ) over X (resp. Y)
and where x (resp. y) denotes the mean 1

N

PN
j¼1 xj (resp.

1
N

PN
j¼1 yj).

We recall hereafter a well-known property of the
(Pearson) correlation coefficient.

Property 1. The correlation coefficient (resp. the Pearson
correlation coefficient) stays unchanged when an increasing
affine transformation is applied to one of its input random
variables (resp. input samples).

In this paper, we often use the notion of Hamming
weight. For every vector x 2 IFn

2 , we denote by HðxÞ the
Hamming weight of x. It equals

Pn
�¼1 x½i�, where x½i�

denotes the ith bit-coordinate of x. The Hamming weight
function has the following property, which will be often
used in Section 4.

Property 2. For every z;m 2 IFn
2 , the Hamming weight of z�m

satisfies

Hðz�mÞ ¼ HðzÞ þHðmÞ � 2Hðz ^mÞ; ð3Þ

where � denotes the bitwise addition and ^ denotes the bitwise
multiplication.

2.2 Context of DPA Attacks

DPA attacks exploit the leakage that results from the
manipulation of some sensitive variables. In the following
definition, we formalize the notion of sensitive variable.

Definition 1 (Sensitive variable). A variable Z is sensitive if it
depends on both a public variableX (derived from the plaintext)
and a secret variable K (derived from the secret key).

In the rest of the paper, Z, X, and K are modeled as
uniformly distributed random variables satisfying

Z ¼ gðX;KÞ; ð4Þ

where g corresponds to an intermediate calculus (e.g., an
SBox function or a simple logic operation such as the bitwise
addition) during the processing of the algorithm.1 More-
over, we shall only consider variables K and Z defined
over small sets (e.g., isomorphic to IFn

2 with n � 8). Indeed,
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(HO)-DPA requires to carry out statistical tests for almost all
the possible values of K. Hence, the complexity (e.g., in
terms of leakage measurements) of the attack increases
exponentially with the dimension of K and only sensitive
data of small length n can be targeted.

Since g and X are public, information leakage on Z
implies information leakage on K. As a consequence, the
manipulation of Z has to be protected against DPA and the
most common algorithmic protection consists of using
masking techniques [5], [6]. As recalled in Section 1, when
ðd� 1Þth-order masking is involved, every sensitive vari-
able Z appearing in the algorithm is represented by d shares
M1; . . . ;Md such that

M1 ? � � � ?Md ¼ Z; ð5Þ

where ? denotes a group law. The shares M1; . . . ;Md�1 are
mutually independent random variables uniformly distrib-
uted over Z and the share Md is the random variable
satisfying (5).

To ensure the security, the variables Mis are manipulated
at different times tis. Thus, the leakage signal LðtiÞ
generated by the algorithm execution, at each time ti, can
be modeled as a noisy function of Mi. More generally, we
will denote by LðtÞ the leakage generated at any time t.

As every tuple of d� 1 shares is independent of Z, an
attacker has to consider the d leakages LðtiÞs simulta-
neously in order to recover information on Z. This is the
core principle of the HO-DPA attacks we formally describe
in the next section.

3 HIGHER ORDER DIFFERENTIAL POWER ANALYSIS

3.1 Adversary Model

In this paper, we assume that the attacker can query the
targeted cryptographic primitive with an arbitrary number
of plaintexts and obtain the corresponding physical
observations. It is also assumed that the attacker cannot
profile the leakage distribution according to the values of
the manipulated data (Template and Profiling Attacks are
thus impossible). In fact, we shall assume in the following
that a correlation distinguisher is used to isolate the
expected sensitive data. The attacker who is modeled in
such a way is weaker than the one considered in Template
Attacks. However, he corresponds quite well to the kind of
adversary encountered in a large variety of applications
such as the banking and GSM ones. This adversary model,
which is very classical in SCA, has been considered in many
other studies (e.g., [11], [13], [16], [17]).

Additionally, we assume that the attacker is able to
precisely determine the manipulation time of every inter-
mediate variable (e.g., masks, masked variables, etc.) that
appears in the algorithm whose implementation is under
attack. This assumption simplifies the study of the attacks.
It may, however, be noted that the attacker is usually
weaker than the one we consider. The manipulation times
of the focused intermediate variables are indeed a priori
unknown by the attacker who usually needs to consider
numerous possible times within a given interval (see, for
instance, [12], [16]).

3.2 Attack Description

HO-DPA aims at recovering information on Z ¼ gðX;KÞ
(and thus on K) by simultaneously considering the leakage

signals at the d times t1; . . . ; td that correspond to the
manipulations of the d shares.

The attack starts by combining thed signalsLðt1Þ; . . . ; LðtdÞ
with a combining function C and by defining a prediction
function f according to some assumptions on the device
leakage model. Then, for every guess k on the value of the
secret K, the attacker computes the so-called prediction f �
gðX; kÞ and checks its validity by estimating the following
correlation coefficient:

�k ¼ � CðLðt1Þ; . . . ; LðtdÞÞ; f � gðX; kÞ½ �: ð6Þ

Remark 2. Due to (4), the coefficient �K (that corresponds to
the correct guess) can be rewritten:

�K ¼ � CðLðt1Þ; . . . ; LðtdÞÞ; fðZÞ½ �: ð7Þ

The attack rests on the following fact: if the functions C and
f are well chosen, then f � gðX;KÞ (i.e., fðZÞ) is highly
correlated to CðLðt1Þ; . . . ; LðtdÞÞ, and thus, the coefficient �K
corresponding to the correct guess must be greater than
every coefficient �k such that k 6¼ K.

To estimate the different correlation coefficients �ks, the
attacker processes N leakage measurements L1ðtÞ; . . . ; LNðtÞ
(where the LjðtÞs can be modeled as N mutually indepen-
dent random variables sharing the same distribution as
LðtÞ). For every k, the estimation of �k is obtained by
computing the Pearson coefficient b�k Nð Þ between the
samples < f � gðX1; kÞ; . . . ; f � gðXN; kÞ > and < CðL1ðt1Þ;
. . . ; L1ðtdÞÞ; . . . ; CðLNðt1Þ; . . . ; LNðtdÞÞ > , where Xj denotes
the public variable corresponding to the jth measurement
LjðtÞ. As b�k Nð Þ tends toward �k when N increases, for N
large enough, the secret K must be the one that maximizesb�k Nð Þ. Hence, the attacker selects the guess k that max-
imizes b�k Nð Þ.

An HO-DPA such as described above successfully makes
it possible to recover the secret K iff b�K Nð Þ > b�k Nð Þ holds
for every k 6¼ K. When the pair ðC; fÞ is s.t. �K ¼ maxk�k ,
the quality of the estimations b�k Nð Þs increases with the
number of measurements N and the success of the attack
essentially depends on N . Then a natural definition for the
efficiency of an HO-DPA involving a pair of functions ðC; fÞ
can be deduced.

Definition 3 (Efficiency of HO-DPA). The efficiency of an
HO-DPA given a success rate � is the smallest value N such
that

P b�K Nð Þ > max
k6¼K

b�k Nð Þ� �
� �: ð8Þ

The definition above allows us to evaluate the efficiency of
an HO-DPA in a formal way. However, since the probability
in (8) relies on the structure of the function g, it cannot be
straightforwardly used to decide on the efficiency of an
HO-DPA in the general case (i.e., whatever the targeted
variable Z ¼ gðX;KÞ). To render such a decision possible,
one usually assumes a very low correlation between correct
and incorrect guesses.2 Under this assumption, which implies
that the correlation coefficients �k are almost null for every
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k 6¼ K, the efficiency of an HO-DPA mainly relies on the

correlation coefficient �K . This fact has been argued in [18],

[19], [20], where it is shown that the number of leakage

measurements N for a successful attack is around �=�2
K ,

where� is a value that depends on the required success rate �

and on the number of key guesses jKj. In this paper, we will

therefore compare attack efficiencies by means of the

correlation values �Ks. For a given HO-DPA attack, we will

refer to �K as the correlation of the attack: the higher the

correlation of an HO-DPA, the more efficient the HO-DPA.

Remark 4. In Section 3.6, some experimental results are

provided which confirm that the correlation is effectively

a good efficiency indicator for HO-DPA.

At this point, a natural issue arises that is the search for

pairs ðC; fÞwhich maximize the correlation �K . As a first step,

we show in the next section how to deduce the prediction

function f maximizing �K from a given combining function C.

3.3 Optimal Prediction Function

Let us begin our discussion with the following important

result which will be intensively used in the rest of the paper.

In the following proposition as well as in the rest of the

paper, we shall consider the conditional expectation E CjZ½ �
as a function E Cj�½ � applied to Z.

Proposition 5. Let C and Z be two random variables. Then, for

every function f defined over Z, we have

� fðZÞ; C½ � ¼ � fðZÞ;E CjZ½ �½ � 	 � E CjZ½ �; C½ �: ð9Þ

Before proving Proposition 5, let us introduce the

following useful lemma.

Lemma 6. Let C and Z be two random variables. Then, for every

function f defined over Z, we have

E fðZÞC½ � ¼ E fðZÞE CjZ½ �½ �: ð10Þ

Proof. We assume that C and Z are discrete (the continuous

case holds straightforwardly from the discrete one). We

have

E fðZÞC½ � ¼
X
z;c

P Z ¼ z; C ¼ c½ �f ðzÞc: ð11Þ

Since P Z ¼ z; C ¼ c½ �equals P Z ¼ z½ �P C ¼ cjZ ¼ z½ �, we get

E fðZÞC½ � ¼
X
z

P Z ¼ z½ �fðzÞ
X
c

P C ¼ cjZ ¼ z½ �c

¼
X
z

P Z ¼ z½ �fðzÞE CjZ ¼ z½ �;

which leads to (10). tu
Remark 7. Lemma 6 implies E C½ � ¼ E E CjZ½ �½ � (for f : z7!1),

which is known as the law of total expectation, and it

implies E E CjZ½ �C½ � ¼ E½E CjZ½ �2� (for f : z 7!E CjZ ¼ z½ �).

Based on Lemma 6, we give hereafter the proof of

Proposition 5.

Proof (Proposition 5). According to Remark 7, the

covariance between fðZÞ and C satisfies

Cov fðZÞ; C½ � ¼ E fðZÞE CjZ½ �½ � � E fðZÞ½ �E E CjZ½ �½ �
¼ Cov fðZÞ;E CjZ½ �½ �:

Hence, the correlation � fðZÞ; C½ � satisfies

� fðZÞ; C½ � ¼ � fðZÞ;E CjZ½ �½ � 	 � E CjZ½ �½ �
� C½ � : ð12Þ

On the other hand, we have

� E CjZ½ �; C½ � ¼ Cov E CjZ½ �; C½ �
� E CjZ½ �½ �� C½ � : ð13Þ

Due to Lemma 6, the covariance Cov E CjZ½ �; C½ � equals

Cov E CjZ½ �;E CjZ½ �½ �, namely it equals the variance

Var E CjZ½ �½ �. Hence, (12) and (13) together imply (9). tu
As a direct consequence of Proposition 5, we have the

next corollary.

Corollary 8. Let d be an integer and let C denote a combined

leakage CðLðt1Þ; . . . ; LðtdÞÞ. The prediction function f that

maximizes the correlation � fðZÞ; C½ � is defined by

foptðzÞ ¼ E CjZ ¼ z½ �: ð14Þ

Let �opt be the correlation �½foptðZÞ; C�. If fopt is not constant,

then �opt satisfies

�opt ¼
� E CjZ½ �½ �
� C½ � : ð15Þ

Proof. Let f be a function defined over Z and let �K
0 denote

the correlation � fðZÞ; C½ �. Then, due to Proposition 5,

we have �K ¼ � fðZÞ;E CjZ½ �½ � 	 �opt. As � fðZÞ;E CjZ½ �½ � is

always smaller than or equal to 1 and since �opt is greater

than or equal to 0, we deduce �K � �opt. This implies

that the function f ¼ fopt : z 7! E CjZ ¼ z½ � maximizes

�K . Finally, (15) holds by definition of fopt and by

Lemma 6. tu

Corollary 8 exhibits the optimal prediction function fopt
and the optimal correlation of an HO-DPA according to a

given combining function and the leakage distribution.

Moreover, Proposition 5 gives us a mean to quantify the

effectiveness loss occurring when a suboptimal function f is

involved. Indeed, in this case, (9) implies that making a

suboptimal prediction f decreases the optimal correlation

�opt by a factor �½f; fopt�.
In practice, the kind of adversary considered in this paper

is not able to compute the optimal prediction function

exhibited in Corollary 8. Indeed, such a computation

requires to determine the exact relationship between the

leakages LðtiÞs and the shares Mis. In the next section, we

will estimate this relationship by modeling the leakage, and

then we will study the optimal prediction function and the

optimal correlation for two widely used second order

combining functions. We will show that some prediction

functions proposed in the literature are, in fact, suboptimal,

and we will compute how much they decrease the correla-

tion �opt (and thus the attack efficiency) from the optimal one

defined in (15).
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4 ANALYSIS OF THE EXISTING

SECOND ORDER DPA

The different 2O-DPA that are studied in this section are

assumed to target an implementation that processes a

masked sensitive variable Z �M at a time t1 and the

corresponding mask M at a time t2. Variables Z and M are

assumed to be mutually independent and uniformly

distributed over IFn
2 .

As argued in Section 3, studying a 2O-DPA essentially

amounts to studying the combining function it involves.

Hereafter, we pay particular attention to the product

combining [5] and the absolute difference combining [11]

which are the most widely used functions in the literature.

For both combining functions, we exhibit the optimal

prediction fopt and we calculate the optimal correlation �opt
by applying (15). We also compare fopt with the Hamming

weight prediction function (which is often involved in the

published HO-DPA) and we study their impact on the

attack efficiency. Eventually, we analyze the obtained

results and address other combining functions that have

been proposed in the literature.
Before presenting our analysis (and to allow us to exhibit

explicit formulas), we need to make the following assump-
tion which we claim is very usual and realistic.

Assumption 1 (Leakage Model). The leakages Lðt1Þ and Lðt2Þ
satisfy

Lðt1Þ ¼ �1 þHðZ �MÞ þB1 ; ð16Þ

Lðt2Þ ¼ �2 þHðMÞ þB2; ð17Þ

where �1 and �2 denote the constant parts of the leakages and

Hð�Þ is the Hamming weight function. B1 and B2 are two

gaussian random variables centered in zero with a standard

deviation � and Z, M, B1, and B2 are mutually independent.3

The model defined by Assumption 1 allows us to have a

quite good formal representation of the device leakage. It

will be referred to as the Hamming Weight Model in the rest

of the paper.

Remark 9. In some cases, it may be sound to assume that

the device does not leak the Hamming weight of the
processed data but the Hamming distance between these

data and an initial state (see, for instance, [17]).

Extending our analysis to this so-called Hamming distance

model is straightforward. Let Lðt1Þ equal �1 þHðIS1 �
Z �MÞ þB1 and Lðt2Þ equal �2 þHðIS2 �MÞ þB2,

where IS1 and IS2 are two initial states independent of

Z and M. After denoting by Z0 the summation IS1 �
IS2 � Z and by M 0 the summation M � IS2, it can be

checked that Lðt1Þ and Lðt2Þ, respectively, equal �1 þ
HðZ0 �M 0Þ þB1 and �2 þHðM 0Þ þB2. As Z0 and M 0 are

uniformly distributed and mutually independent, this

model is equivalent to the one defined in Assumption 1.

When the noises B1 and B2 are both null, we shall say
that the model is idealized. The analysis of 2O-DPA in this
model is of interest. First, because some devices leak quite
perfect nonnoisy information. Second, because it is generic
(it does not take the component noise into account) and
theoretical analyses conducted in this model are usually
simple. In such an idealized model, exhibiting pertinent
properties and/or characteristics for new combining and
prediction functions ðC; fÞ is often much more simple than
in a model with noise. However, this primary study is not
sufficient alone and, once defined in the idealized model,
a pair of functions ðC; fÞ must also be analyzed in the
noisy model. Indeed, the combining of leakage points
always results in an amplification of the noise (e.g., the
noises B1 and B2 are added or multiplied), and it is
therefore important to study the relationship between the
efficiency of a combining function and the noise varia-
tions. For this reason, in the following, we conduct our
analysis in the context of both the idealized and the
nonidealized model.

4.1 Product Combining Second Order DPA

In this section, we investigate the product combining
function:

Cprod Lðt1Þ; Lðt2Þð Þ ¼ Lðt1Þ 	 Lðt2Þ: ð18Þ

This function has already been studied by Schramm and
Paar in [7]. Our main contribution compared to their work is
that we consider a leakage model where the offsets �i are
not null. This makes our analysis more practical since the
leakage often has a nonzero offset due to the contribution of
the device activity apart from the variable manipulation.
During our study, we show in particular that the efficiency of
the product combining is related to the values of these offsets
and we show how to significantly improve it by applying a
preprocessing to the leakage signals before combining them.

Let us start our analysis by computing the optimal
prediction function corresponding to Cprod. According to
Corollary 8, it is the function fopt ¼ z7!E½Lðt1Þ 	 Lðt2ÞjZ ¼ z�.
In the next proposition, we give an explicit formula for it.

Proposition 10. Let Lðt1Þ and Lðt2Þ satisfy (16) and (17). Then,
for every z 2 IFn

2 , we have

E Lðt1Þ 	 Lðt2ÞjZ ¼ z½ � ¼ � 1

2
HðzÞ þ n

2 þ n
4

þ n
2
�1 þ �2ð Þ þ �1�2:

ð19Þ

Proof. Since B1 and B2 are independent from M and satisfy
E B1½ � ¼ E B2½ � ¼ 0, the expectation E Lðt1Þ 	 Lðt2ÞjZ ¼ z½ �
is equal to E Hðz�MÞHðMÞ½ � þ �1E HðMÞ½ � þ �2E½Hðz�
MÞ� þ �1�2. Moreover, since M is uniformly distributed
over IFn

2 , we have E Hðz�MÞ½ � ¼ E HðMÞ½ � ¼ n
2 and, from

Lemma 21 (see Appendix 1), we have E½Hðz�MÞ
HðMÞ� ¼ � 1

2 HðzÞ þ n2þn
4 . Hence, we get (19). tu

Proposition 10 together with Corollary 8 implies that
the function z7!HðzÞ, or any decreasing affine function of
it, may be used as an optimal prediction function for a
2O-DPA involving the product combining.
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3. For the sake of simplicity, we assume that both noises B1 and B2 have
the same standard deviation. The analysis can be straightforwardly
generalized for � B1½ � 6¼ � B2½ �.



Corollary 11. In the Hamming weight model, the optimal

prediction function fopt corresponding to Cprod is of the form

fopt : z 7!A �HðzÞ; ð20Þ

where A is an affine decreasing function defined over HðZÞ.
Proof. This a straightforward consequence of Corollary 8

and Proposition 10. tu

It must be noted that the Hamming weight function has

already been used as prediction function in previous works

[7], [16]. Corollary 11 shows that this choice maximizes the

amplitude of the correlation coefficient (in the Hamming

weight model) and that it results in a negative correlation

(as observed in [16], for instance).
To compute the optimal correlation corresponding to one

of the functions satisfying (20), we exhibit in the following a

formula for the variance of Lðt1Þ 	 Lðt2Þ.
Proposition 12. Let Lðt1Þ and Lðt2Þ satisfy (16) and (17). Then,

the variance of Lðt1Þ 	 Lðt2Þ satisfies

Var Lðt1Þ 	 Lðt2Þ½ � ¼ 2n3 þ n2

16
þ n

4
n�1 þ �2

1 þ n�2 þ �2
2

� �
þn

2 þ n
2

�2 þ n�1 þ �2
1 þ n�2 þ �2

2

� �
�2 þ �4:

ð21Þ

Proof. As Z and M are mutually independent and

uniformly distributed, one can check that M and Z �M
are mutually independent. This implies that Lðt1Þ and

Lðt2Þ are also mutually independent and we get

Var Lðt1Þ 	 Lðt2Þ½ � ¼ E½Lðt1Þ2�E½Lðt2Þ2�
� E Lðt1Þ½ �2E Lðt2Þ½ �2:

ð22Þ

Since Z and M are uniformly distributed over IFn
2 and

mutually independent, Lemma 20 (see Appendix 1)

implies E½HðMÞ2� ¼ E½HðZ �MÞ2� ¼ n2þn
4 . Then, since

we have Bi 
 Nð0; �Þ, one deduces that E LðtiÞ½ � and

E½LðtiÞ2�, respectively, equal n
2 þ �i and n2þn

4 þ n�i þ �2
i þ

�2 for i ¼ 1; 2. Finally, simplifying (22) leads to (21). tu
It can be noted in (21) that Var Lðt1Þ 	 Lðt2Þ½ � is an

increasing function of n�1 þ �2
1 þ n�2 þ �2

2 . Hence, the offsets

values that minimize the variance are �1 ¼ �2 ¼ �n=2.

Actually, this is not surprising: with such offsets, the leakages

are centered in zero (i.e., E Lðt1Þ½ � ¼ E Lðt2Þ½ � ¼ 0) which

alleviates the noise amplification caused by the product

combining. As a direct consequence, minimizing the variance

of Lðt1Þ 	 Lðt2Þ (and thus maximizing the correlation) can be

done by centering the leakage signals Lðt1Þ and Lðt2Þ in zero

(namely by substituting LðtÞ � E LðtÞ½ � for LðtÞ). This can be

simply achieved by averaging the leakage for a large number

of measurements, then subtracting the average to each

measurements. In the sequel, this preprocessing is called

normalization step.
In the Hamming weight model, if the data Vt manipu-

lated at time t is uniformly distributed over IFn
2 , then the

leakage after the preprocessing step equals LðtÞ � E LðtÞ½ �
and satisfies

LðtÞ � E LðtÞ½ � ¼ �n
2
þHðVtÞ þBt:

After assuming that the preprocessing step is part of
the combining computation, we get the improved product
combining function:

Cprod? Lðt1Þ; Lðt2Þð Þ ¼ Lðt1Þ � E Lðt1Þ½ �ð Þ 	 Lðt2Þ � E Lðt2Þ½ �ð Þ:

Then, we have the following proposition.

Proposition 13. For every z 2 IFn
2 , we have

E Cprod? Lðt1Þ; Lðt2Þð ÞjZ ¼ z
� �

¼ � 1

2
HðzÞ þ n

4

and

Var Cprod? Lðt1Þ; Lðt2Þð Þ
� �

¼ n
2

16
þ n

2
�2 þ �4:

Proof. Proposition 13 straightforwardly results from
Propositions 10 and 12 by setting �1 ¼ �2 ¼ �n=2. tu

As a consequence of the proposition above, in the
Hamming weight model, an optimal prediction function
fopt corresponding to Cprod? is of the form

fopt : z 7!A �HðzÞ;

where A is an affine decreasing function defined over HðZÞ.
Due to Proposition 13 and Corollary 8, we can propose

an explicit formula for the optimal correlation �prod
?

opt

corresponding to the improved product combining Cprod?
and fopt. In the Hamming weight, the correlation satisfies

�prod
?

opt ¼
ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 8n�2 þ 16�4
p : ð23Þ

In particular, in the idealized model (� ¼ 0), it satisfies

�prod
?

opt ¼ 1=
ffiffiffi
n
p

, and in the very noisy model (�� n), it

satisfies �prod
?

opt �
ffiffiffi
n
p

=4�2. As an illustration to (23), Table 1

gives some values of the correlation for n 2 f0; . . . ; 8g and

� 2 f0; 1; 5; 10g.
To illustrate the gain of efficiency resulting from the

normalization step we propose in this paper, let us now
consider the correlation �prod�0

opt for the classical product
combining function (18) in the Hamming weight model
without offsets (such as computed in [7]). It satisfies

�prod�0
opt ¼

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n3 þ n2 þ 8ðn2 þ nÞ�2 þ 16�4
p :

It can be checked that �prod�0
opt is strictly lower than the

correlation �prod
?

opt we obtained for the product combining with
preprocessing Cprod? . Figs. 1 and 2 show how the value of the
offsets (assuming �1 ¼ �2 ¼ �) affects the correlation �prodopt for
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TABLE 1
(Optimal) Correlation for the Improved Product Combining



n 2 f1; 4; 8g in the idealized model and in a noisy model
(� ¼ 2). The maximum of this correlation is always reached
for � ¼ �n=2. Moreover, we observe that the correlation
quickly decreases when the offset deviates from�n=2, which
demonstrates the effectiveness of our improvement.

4.2 Absolute Difference Combining
Second Order DPA

In this section, we investigate the absolute difference
combining function, i.e., we take interest in the variable

Cdiff Lðt1Þ; Lðt2Þð Þ ¼ jLðt1Þ � Lðt2Þj:

The absolute difference combining has already been
studied by Joye et al. in [13]. In their paper, the authors
consider the idealized model (i.e., without noise) and
analyze a single-bit 2O-DPA (i.e., with a binary prediction
function: fðZÞ 2 f0; 1g).

In the present paper, we extend this analysis to the
multibit case (i.e., where f is not a binary function but the
optimal prediction function) not only in the idealized but
also in the noisy model. In the Hamming weight model,
Cdiff Lðt1Þ; Lðt2Þð Þ equals j�1 � �2 þHðZ �MÞ �HðMÞ þB1

�B2j. For this combining to work correctly, it is important
that �1 be equal to �2. Indeed, if there is a great difference
between these values, then the effect of the absolute value is
reduced (or even canceled) by the constant term �1 � �2. For
instance (neglecting the noise), if we have j�1 � �2j > n,
then �1 � �2 þHðZ �MÞ �HðMÞ is either strictly positive
or strictly negative and, as noticed by Messerges in [11],
difference without absolute value is not a sound combining
function (i.e., the difference between the two leakages is not
correlated to the sensitive variable). Consequently, as for
the product combining, we point out that the leakages must
be normalized in order to have identical offsets in both
leakage signals. Thus, as in Section 3.4, we will consider in
this section that the leakages are normalized before being
combined in order to ensure that they have similar offsets
(i.e., we define the combining function Cdiff? such that
Cdiff? Lðt1Þ; Lðt2Þð Þ ¼ Lðt1Þ � E Lðt1Þ½ � � Lðt2Þ þ E Lðt2Þ½ �j j). In
that case, the combined leakage after preprocessing satisfies

Cdiff? Lðt1Þ; Lðt2Þð Þ ¼ jHðZ �MÞ �HðMÞ þBj; ð24Þ

where B denotes B1 �B2 and satisfies B 
 Nð0;
ffiffiffi
2
p

�Þ.
For the absolute difference combining, it is not possible to

exhibit a simple formula for the expectation that would be
pertinent in the general case. Hence, we structure our study of
the combining function in two steps: the first one is performed
in the idealized model and the second one in the noisy model.

4.2.1 Study in the Idealized Model

If B is null, then (24) becomes

Cdiff? Lðt1Þ; Lðt2Þð Þ ¼ jHðZ �MÞ �HðMÞj:

In the following proposition, we exhibit an explicit formula
for the expectation of jHðZ �MÞ �HðMÞj.
Proposition 14. Let z be an element of IFn

2 . Then we have

E HðMÞ �Hðz�MÞj j½ � ¼ 21�HðzÞHðzÞ
HðzÞ � 1

bHðzÞ2 c

 !
: ð25Þ

Proof. The proof of Proposition 14 is given in
Appendix 2.2. tu

As a consequence of Proposition 14, the optimal
prediction for the absolute difference combining in the
idealized Hamming weight model is not the Hamming
weight of Z but a nonaffine function of it.

Corollary 15. In the Hamming weight model, the optimal

prediction function fopt corresponding to Cdiff
 is of the form

fopt : z7!½A � f �ðzÞ;

where f is the function z 7! 21�HðzÞHðzÞ HðzÞ�1

bHðzÞ2 c

	 

and A is

either the identity function or an affine increasing function

defined over fðZÞ.
Proof. This a straightforward consequence of Corollary 8

and Proposition 14. tu

Our main interest in Corollary 15 is that it tells us that even
when the leakage satisfies the Hamming weight model, the
Hamming weight of the targeted variable is not necessarily
the optimal prediction for an HO-DPA. It actually depends on
the combining function.
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Fig. 1. Correlation �prodopt for n ¼ 8 (on the left), n ¼ 4 (in the middle), and

n ¼ 1 (on the right) in the idealized model, according to the offset �.

Fig. 2. Correlation �prodopt for n ¼ 8 (on the left), n ¼ 4 (in the middle), and

n ¼ 1 (on the right) in a noisy model (� ¼ 2), according to the offset �.



The variance of HðZ �MÞ �HðMÞj j has already been

computed by Joye et al. [13]. The authors prove that it satisfies

Var HðZ �MÞ �HðMÞj j½ � ¼ n
2
� 2�2nn

2n

n

	 
	 
2

: ð26Þ

By Corollary 8 and in view of formulas (25) and (26), we

deduce the optimal correlation related to Cdiff? :

�diff
?

opt ¼
2n
Pn

i¼0 2�2ii2 n
i

� �
i�1
bi2c

� �2
�

Pn
i¼0 2�ii n

i

� �
i�1
bi2c

� �� �2

22n�2 n
2 � 2�2nn 2n

n

� �� �2
� � :

We have computed in Table 2 the optimal correlation�diff
?

opt for

some values ofn. For comparison, we have also computed the

correlation �HW that corresponds to the Hamming weight

prediction function (i.e., f : z 7!HðzÞ). As expected, choosing

our new prediction function makes it possible to slightly

increase the correlation value (especially for low values of n).

Furthermore, it can be checked that, as stated in Proposition 5,

the efficiency gain is �ðf; foptÞ.
When the leakage is noisy, the previous analysis is no

longer valid and cannot be extended to take the noise into

account. Therefore, in the next section, we conduct a

complementary analysis which addresses the noisy model.

4.2.2 Study in the Noisy Model

In the analysis that follows, we shall use the notation erf to

denote the error function defined for every x 2 IR by

erfðxÞ ¼ 2ffiffi
�
p
R x

0 expð�t2Þdt. We recall that the probability

distribution function � of the standard gaussian distribu-

tion Nð0; 1Þ and the error function satisfy �ðxÞ ¼ 1
2 ð1þ

erfðx=
ffiffiffi
2
p
ÞÞ. The following proposition shall be useful to

study Cdiff? when the leakage is noisy.

Proposition 16. Let s be a real number and B be a Gaussian

random variable centered in zero with a standard deviation �0.

The expectation of the variable jsþBj satisfies

E jsþBj½ � ¼ serf
sffiffiffi
2
p

�0

	 

þ

ffiffiffi
2
p

�0ffiffiffi
�
p exp � s2

2�2
0

	 

: ð27Þ

Proof. The proof of Proposition 16 is given in Appendix 1. tu

As a straightforward consequence of Proposition 16, we

have the following corollary.

Corollary 17. Let Lðt1Þ and Lðt2Þ satisfy (16) and (17). For

every z 2 IFn
2 , we have

E Cdiff? Lðt1Þ; Lðt2Þð ÞjZ ¼ z
� �
¼ E Hðz�MÞ �HðMÞð Þerf

Hðz�MÞ �HðMÞ
2�

	 
� �
þ 2�ffiffiffi

�
p E exp � Hðz�MÞ �HðMÞð Þ2

4�2

 !" # ; ð28Þ

and

Var Cdiff? Lðt1Þ; Lðt2Þð Þ
� �
¼ 2�2 þ n

2
� E Cdiff? Lðt1Þ; Lðt2Þð Þ

� �2 : ð29Þ

Proof. After denoting S ¼ Hðz�MÞ �HðMÞ, we get
E jLðt1Þ � Lðt2ÞjjZ ¼ z½ � ¼ E jS þBj½ � and Proposition 16
directly leads to (28). Since we have E B½ � ¼ 0, then E½jS þ
Bj2� equals E S2½ � þ E B2½ �. Due to the linearity of the
expectation, E S2½ � equals E½HðMÞ2� þ E½Hðz�MÞ2� �
2E HðMÞHðz�MÞ½ �. Then, from Lemmas 20 and 21 (see
Appendix 1), we deduce E S2½ � ¼ HðzÞ. On the other
hand, we have E B2½ � ¼ 2�2; hence, we deduce E½jS þ
Bj2� ¼ 2�2 þHðzÞ, which finally gives (31) by definition
of the variance. tu

Corollary 17 does not allow to exhibit explicit formulas
for fopt and �opt in the noisy model. However, (30) and (31)
may be involved to efficiently compute the optimal
prediction function and the optimal correlation correspond-
ing to Cdiff? in the noisy model for every pair ðn; �Þ. As an
illustration, we give in Table 3 the exact optimal correlation
�diff

?

opt for n 2 f1; . . . ; 8g and � 2 f0; 1; 5; 10g.
In order to determine the efficiency loss resulting from the

use of the Hamming weight as prediction function instead of
the one defined in (28), we computed the correlation
�ðHðZÞ; foptðZÞÞ (as suggested in Proposition 5) for different
values of n and �. Table 4 lists some of our results.

Table 4 suggests that whatever the dimension n, the
correlation �ðHðZÞ; foptðZÞÞ tends toward 1 when � increases.
This suggests that in the noisy model, the Hamming weight
of Z (or an affine function of it) is a good prediction for the
absolute difference combined leakage and that it becomes
optimal as the noise increases. The following corollary brings
an explanation to this phenomenon.
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TABLE 2
Correlations for the Absolute Difference Combining in the

Idealized Model

TABLE 3
Optimal Correlation for the Absolute Difference Combining

TABLE 4
Correlation between the Optimal Prediction Function and the

Hamming Weight



Corollary 18. Let Lðt1Þ and Lðt2Þ satisfy (16) and (17). Then, for
every integer n and for every z 2 IFn

2 , we have

E Cdiff? Lðt1Þ; Lðt2Þð ÞjZ ¼ z
� �

¼ 2�ffiffiffi
�
p þ HðzÞ

2
ffiffiffi
�
p

�
þ " 1

�3

	 

;

and

Var Cdiff? Lðt1Þ; Lðt2Þð Þ
� �

¼ 2�� 4

�
�2 þ �� 2

2�
nþ " 1

�2

	 

:

Proof. Let us focus on (28) asymptotically. For every a, we
have erfðaÞ ¼ 2ffiffi

�
p aþ " a3ð Þ and expðaÞ ¼ 1þ aþ " a2ð Þ.

Since we also have Hðz�MÞ �HðMÞ ¼ "ð1Þ (as n is a
constant), we can rewrite (28) in the following form:

E Cdiff? Lðt1Þ; Lðt2Þð ÞjZ ¼ z
� �
¼ 1ffiffiffi

�
p

�
E Hðz�MÞ �HðMÞð Þ2
h i

þ " 1

�3

	 

þ 2�ffiffiffi

�
p 1� 1

4�2
E Hðz�MÞ �HðMÞð Þ2
h i

þ " 1

�4

	 
	 
 :
ð30Þ

Then, E½ðHðz�MÞ �HðMÞÞ2� equals E½HðMÞ2� þ
E½Hðz�MÞ2� � 2E½HðMÞHðz�MÞ�. From Lemmas 20
and 21 (see Appendix 1), one verifies that this expression
equals HðzÞ, which together with (30) and (29) implies
Corollary 18. tu
Corollary 18 confirms the empirical study presented in

Table 4: in the noisy model, the Hamming weight is a good
prediction for the absolute difference combined leakage.
Indeed, the function z7!E jLðt1Þ � Lðt2ÞjjZ ¼ z½ � (which
corresponds to the optimal prediction function) tends
toward an affine function of HðzÞ when the noise increases.
Moreover, we can deduce from Corollaries 8 and 18 an
approximation of the correlation �diff

?

opt when n is negligible
compared to �:

�diff
?

opt �
ffiffiffi
n
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 4
p

�2
:

4.3 Product versus Absolute Difference

In the two previous sections, we have investigated the
correlation of 2O-DPA involving either the product or the
absolute difference as combining function. Tables 1 and 3
give the correlations for n 2 f0; . . . ; 8g and � 2 f0; 1; 5; 10g
and show that, for all these parameters, the correlation for
the product combining is greater than the correlation for the
absolute difference combining.

In a very noisy model (�� n), we have shown that the
correlations satisfy

�prod
?

opt �
ffiffiffi
n
p

4�2
¼ 0:25

ffiffiffi
n
p

�2

and

�diff
?

opt �
ffiffiffi
n
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 4
p

�2
� 0:165

ffiffiffi
n
p

�2
:

We observe a linear relationship between the two approx-
imations of the correlations in the very noisy model:

�prod
?

opt � 1:5�diff
?

opt . As a straightforward consequence of this

relation, the correlation �prod
?

opt is always greater than �diff
?

opt

when the noise is high and the two correlations are

asymptotically equivalent when the noise increases.

4.3.1 Empirical Verification

In order to empirically verify the analysis carried out in the

previous sections, we ran some 2O-DPA attack simulations

according to the defined Hamming weight model. The

targeted sensitive variableZwas a vector ofn � 8 bits chosen

among the output bits of the AES S-Box (taking X �K as

input). The different values ofXwere randomly picked up to

model a known (but not chosen) plaintext attack. Tables 5 and

6 give the number of measurements required to reach a

success rate of either 90 percent or 99.9 percent for the product

and the absolute difference according to the values of n 2
f0; � � � ; 8g and � 2 f0; 1; 5g (10,000—resp. 1,000—simulations

were performed for � 2 f0; 1g—resp. � ¼ 5).

Remark 19. We can observe that the results printed in

Tables 5 and 6 match very well the correlation values

given in Tables 1 and 3. Indeed, there is a kind of one-to-

one correspondance between the correlation values and

the number of measurements required to reach a given

success rate. These results confirm that the correlation is

a good indicator of the efficiency of an HO-DPA.
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TABLE 5
Number of Required Measurement for the Product Combining

TABLE 6
Number of Required Measurement for the Absolute Difference

Combining



The number of measurements required by an HO-DPA

quickly increases as the noise increases. Consequently, we

were not able to derive some precise success rates for � � 10.

However, we have done several simulations with different

noise deviations that all led to the same results: the number

of measurements required to retrieve the targeted secret was

almost all the time smaller for the product combining than

for the absolute difference combining.
From our observations, we conclude that the product

combining is more efficient than the absolute difference

combining not only in the idealized but also in the noisy

model (under the assumption that the leakage is normalized

before being combined, as explained in Section 3.4).

4.4 Further Combining Functions

Other combining functions have been proposed in the

literature [13], [16], [21]. In this section, we discuss these

different proposals.

4.4.1 Raising to the Power

In [13], Joye et al. suggest to improve the efficiency of the

absolute difference combining by raising it to a power �.

They analyze the new combining functions C�diff? in the

idealized model (corresponding to our model with � ¼ 0)

for a single-bit 2O-DPA (i.e., with a binary combining

function f : z 7!z½i�). Oswald et al. carry on with this

approach in [16]: for a prediction function equal to the

Hamming weight (i.e., f : z 7!HðzÞ), they evaluate the

correlation coefficients for C�diff? and C�prod? according to

different � in the idealized model without offset (corre-

sponding to our model with �1 ¼ �2 ¼ 0).
For several values n and �, we have computed in the

idealized model the optimal correlations for both C�prod? and

C�diff? .
4 Table 7 lists the obtained values.

For both combining functions and every n, the maximum

of the optimal correlations is reached for � ¼ 1. Thus, our

analysis shows that raising the combined leakage to a

power is not a sound approach to increase the efficiency of a

2O-DPA when the noise is null. This seems to contradict the

analyses presented in [13], [16], where the authors report

that raising to some values � improves the efficiency of the

combining. The difference between our conclusions and the

ones in [13], [16] is a consequence of the following fact: our

study compares 2O-DPA that have been optimized by

involving the optimal prediction function (introduced in

Section 3.3) and by normalizing the leakage signals (as

shown in Section 3.4). Besides, for every � we have tested,

our correlation values are greater than the ones reported by

Oswald et al. in [16].
In fact, we observed that raising to the power also

decreases the efficiency of 2O-DPA in the noisy model. To

summarize, our analysis suggests that raising the combin-

ing function to a power � decreases the efficiency of the

second order DPA, the noise being null or not.

4.4.2 Sine-Based Combining Function

In [21], Oswald and Mangard propose a combining
function based on the sine function. It takes as parameters
the exact Hamming weights of the mask and of the
masked variable5:

CsinðHðZ �MÞ;HðMÞÞ ¼ sinð HðZ �MÞ �HðMÞð Þ2Þ: ð31Þ

They also suggest to use the above combining function
together with the following prediction function:

fsinðZÞ ¼ �89:95 sinðHðZÞÞ3

� 7:82 sinðHðZÞÞ2 þ 67:66 sinðHðZÞÞ:
ð32Þ

In the idealized model and for n ¼ 8, the use of the couple
Csin; fsinð Þ allows an attacker to reach a correlation of 0.83,

which is quite high. However, fsin is not optimal. Indeed,
Corollary 8 states that the optimal prediction function for
Csin is the function fopt defined by

foptðZÞ ¼ EM CsinðHðZ �MÞ;HðMÞÞ½ �: ð33Þ

Actually, for such a function, we have �ðfsin; foptÞ ¼ 0; 97,
which implies that the use of fsin instead of fopt results in an
efficiency loss of 3 percent.

Without the above improvement, it is difficult to
compare the efficiencies of Csin and Cprod
 . Indeed, the
attack scenario presented in [21] does not correspond to the
kind of attacker we focus in this paper (see Section 3.1). In
[21], the authors consider a very strong adversarial model
where the attacker is able to recover the exact Hamming
weights of the mask and the masked variable based on
preprocessed templates (see [2] for further details on
Template Attacks). However, in such a scenario, combining
the obtained Hamming weights is a suboptimal attack
strategy and, as explained in [21], a better strategy is to use
a Bayesian classification (or maximum likelihood test).
Moreover, the recovering of the exact Hamming weight
values is only possible in an almost noise-free model.

As argued at the beginning of this section, in a classical
HO-DPA scenario, the evaluation process of a combining
function must include an analysis in a noisy environment.
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TABLE 7
Optimal Correlation for C�prod? and C�diff?

4. When n equals 1 and � is even, the product of the leakages does not
depend on Z (and the expectation is constant with Z) which results in an
undefined correlation.

5. The formulas given in [21] are erroneous, and (31) and (32) are their
corrected versions.



Therefore, we analyzed the efficiency of the sine-based
combining in the presence of noise. Namely, we added
Gaussian noisesN1; N2 
 Nð0; �Þ to the Hamming weights in
(33) and (35). We list in Table 8 the values of the correlation
according to an increasing noise (with n equal to 8).

It can be observed that the correlation for Csin quickly
decreases as � increases. For a noise deviation � greater than
or equal to 0.4 (which is quite low), the product combining
offers a greater correlation. This suggests that in an HO-DPA
scenario (where the leakage is noisy), the sine-based
combining function is not suitable.

4.4.3 Final Comparison

To conclude this section, Fig. 3 plots the correlations �K
with respect to the noise deviation � 2 ½0; 2� for the
combining functions Csin, C�prod? , and C�diff? , � 2 f1; 2; 3g.
This plot underlines the previous conclusion: among the
known combining functions, the improved product com-
bining offers the best efficiency in a general leakage model.

5 CONCLUSION

In this paper, we have investigated higher order DPA
attacks that combine several leakage signals to defeat
masking countermeasures. We have first defined a theore-
tical framework allowing us to evaluate the efficiency of
such an HO-DPA and have shown how to optimize it
according to the combining technique and the leakage
model. This enabled us to study the existing combining
techniques for second order DPA in the Hamming weight
model with noise, paying particular attention to product
combining and absolute difference combining. Our analysis
allowed us to exhibit a way of significantly improving the
product combining in this model and we showed that this
improved product combining is more efficient than all the
other techniques previously proposed in the literature.

Our work introduces the basis for a practically oriented
analysis of HO-DPA attacks that may be used for future
research. In particular, the framework proposed in this
paper makes it possible to analyze the efficiency of new
combining techniques in a general model. Moreover, our
approach could be extended to the investigation HO-DPA
of orders greater than 2.

APPENDIX 1

USEFUL LEMMAS

Lemma 20. Let n be a positive integer and let M be a random
variable uniformly distributed over IFn

2 . Then, we have

E½HðMÞ2� ¼ n
2 þ n

4
: ð34Þ

Proof. Since M is uniformly distributed over IFn
2 , we have

E½HðMÞ2� ¼ E
Xn
i;j¼1

M½i�M½j�
" #

;

that is

E½HðMÞ2� ¼
Xn
i;j¼1
i 6¼j

E M½i�M½j�½ � þ
Xn
i¼1

E M½i�½ �:

For every i 6¼ j, we have E M½i�M½j�½ � ¼ 1
4 and E M½i�½ � ¼ 1

2 .

Hence, we deduce that E½HðMÞ2� ¼ nðn� 1Þ 	 1
4þ n	

1
2 ¼ n2þn

4 .

Lemma 21. Let n be a positive integer and M be a random

variable uniformly distributed over IFn
2 . Then, for every

z 2 IFn
2 , we have

E Hðz�MÞHðMÞ½ � ¼ � 1

2
HðzÞ þ n

2 þ n
4

: ð35Þ

Proof. From Property 2, we have

E Hðz�MÞHðMÞ½ � ¼ HðzÞE HðMÞ½ � þ E½HðMÞ2�
� 2E Hðz ^MÞHðMÞ½ �

: ð36Þ

Since M is uniformly distributed, we have E HðMÞ½ � ¼ n
2

and E½HðMÞ2� ¼ n2þn
4 (from Lemma 20). On the other

hand, E Hðz ^MÞHðMÞ½ � satisfies

E Hðz ^MÞHðMÞ½ � ¼
Xn
i¼0

z½i�E M½i�HðMÞ½ �: ð37Þ

SinceM is uniformly distributed over IFn
2 , E M½i�HðMÞ½ �

is equal to 1
nE½HðMÞ2�, i.e., to nþ1

4 (from Lemma 20). Hence,
simplifying (36) leads to (35). tu

Lemma 22. Let m and n be two integers and r be a positive

integer: X
k

r

mþ k

	 

s

nþ k

	 

¼ rþ s

r�mþ n

	 

: ð38Þ
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TABLE 8
Correlations for Csin and Cprod? According to �

Fig. 3. Correlation �K for different combining functions according to the

noise deviation �.



Proof. Lemma 22 is a well-known result whose proof can be

found in [22]. tu

APPENDIX 2

PROOFS OF PROPOSITIONS 14 AND 16

2.1 Proof of Proposition 14

Proof. For every pair ðz;mÞ 2 IFn
2 , Property 2 implies

jHðz�mÞ �HðmÞj ¼ jHðzÞ � 2Hðz ^mÞj from which we

deduce

E jHðz�MÞ �HðMÞj½ �

¼
XHðzÞ
i¼0

jHðzÞ � 2ijP Hðz ^MÞ ¼ i½ �
: ð39Þ

Since M is uniformly distributed, P Hðz ^MÞ ¼ i½ � equals

2�HðzÞ h
i

� �
. Hence, we deduce

E jHðz�MÞ �HðMÞj½ �

¼ 2�HðzÞ
XbHðzÞ2 c

i¼0

HðzÞ
i

	 

ðHðzÞ � 2iÞ:

ð40Þ

By symmetry, we have
PbHðzÞ2 c

i¼0
HðzÞ
i

� �
equal to

1
2 ð
PHðzÞ

i¼0
HðzÞ
i

� �
þ HðzÞ

HðzÞ
2

	 

ðHðzÞmod 2ÞÞ. Then,

P
i

HðzÞ
i

� �
¼

2HðzÞ implies

XbHðzÞ2 c

i¼0

HðzÞ
i

	 

¼ 2HðzÞ�1 þ 1

2

HðzÞ
HðzÞ

2

 !
ðHðzÞ þ 1 mod 2Þ: ð41Þ

On the other hand, HðzÞ
i

� �
i equals HðzÞ HðzÞ�1

i�1

� �
, which in

a similar way gives

XbHðzÞ2 c

i¼0

HðzÞ
i

	 

i ¼ HðzÞ

2
2HðzÞ�1

�HðzÞ
2

HðzÞ � 1
HðzÞ�1

2

 !
	 ðHðzÞmod2Þ:

ð42Þ

Finally, (40), (41), and (42) lead to (25). tu

2.2 Proof of Proposition 16

Proof. Let 	B and �B, respectively, denote the probability

density function and the probability distribution func-

tion of B (that is, �BðyÞ ¼ P B � y½ � ¼
R y
�1 	BðxÞdx). As

B has a gaussian distribution Nð0; �0Þ, we have 	BðxÞ ¼
1ffiffiffiffi

2�
p

�0
expð�x2=2�2

0Þ. Then, we have

E jsþBj½ � ¼
Z þ1
�1
jsþ xj	BðxÞdx

¼ s
Z s

�s
	BðxÞdxþ

Z s

�s
x	BðxÞdx

þ 2

Z þ1
s

x	BðxÞdx:

Since the function x 7!x	BðxÞ is odd, the termR s
�s x	BðxÞdx equals zero. Moreover , we haveR s
�s 	BðxÞdx ¼ 2 �BðsÞ � 1

2

� �
and

Rþ1
s x	BðxÞdx ¼ �0ffiffiffiffi

2�
p exp

�s2=2�2
0

� �
. Hence, we get

E jsþBj½ � ¼ 2s �BðsÞ �
1

2

	 

þ

ffiffiffi
2
p

�0ffiffiffi
�
p exp �s2=2�2

0

� �
: ð43Þ

Finally, since B has a gaussian distribution Nð0; �0Þ, its

probability distribution function �B satisfies �BðyÞ ¼
1
2 ð1þ erfð yffiffi

2
p

�0
ÞÞ for every y 2 IR; hence, (43) directly

implies (27). tu
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Régis Bévan received the MS degree in
electronics and signal processing in 1999, and
the PhD degree in computer science and signal
processing in 2004. His PhD thesis was about
side channel attacks against smartcards. He
worked from 1999 to 2007 in the Cryptography
and Security Group at Oberthur for payment
and GSM smartcard security. Currently, he
works at Nagravision for PayTV security. His
main scientific interests are computer security
and cryptography.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PROUFF ET AL.: STATISTICAL ANALYSIS OF SECOND ORDER DIFFERENTIAL POWER ANALYSIS 13


