
Hardware Countermeasures against DPA –
A Statistical Analysis of Their Effectiveness

Stefan Mangard�

Institute for Applied Information Processing and Communications
Graz University of Technology

Inffeldgasse 16a, A-8010 Graz, Austria
Stefan.Mangard@iaik.at

http://www.iaik.at/research/sca-lab

Abstract. Many hardware countermeasures against differential power
analysis (DPA) attacks have been developed during the last years. De-
signers of cryptographic devices using such countermeasures to protect
their devices have the challenging task to select and implement a suit-
able combination of countermeasures. Every device has different require-
ments, and so there is no universal solution to protect devices against
DPA attacks.
In this article, a statistical approach is pursued to determine the effect
of hardware countermeasures on the number of samples needed in DPA
attacks. This approach results in a calculation method that enables
designers to assess the resistance of their devices against DPA attacks
throughout the design process. This way, different combinations of
countermeasures can be easily compared and costly design iterations
can be avoided.

Keywords: Smart cards, Side-Channel Attacks, Differential Power anal-
ysis (DPA), Hardware countermeasures

1 Introduction

During the last years, a lot of effort has been dedicated towards the research
of side-channel attacks [1,9,10] and the development of corresponding counter-
measures. In particular, there have been many endeavors to develop effective
countermeasures against differential power analysis (DPA) [10,15] attacks.

DPA attacks are based on the fact that the power consumption of a cryp-
tographic device depends on the internally used secret key. Since this property
can be exploited with relatively cheap equipment, DPA attacks pose a serious
practical threat to cryptographic devices, like smart cards.

The countermeasures that have been developed up till now against these
attacks can be categorized into two groups. The first group are the so-called
� This work has been supported by the Austrian Science Fund (FWF Project No.

P16110-N04).

T. Okamoto (Ed.): CT-RSA 2004, LNCS 2964, pp. 222–235, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Hardware Countermeasures against DPA 223

algorithmic countermeasures [4,5,7,14,22]. The basic idea of these countermea-
sures is to randomize the intermediate results that are processed during the
execution of a cryptographic algorithm. Classical first-order DPA attacks are
rendered practically impossible, if this randomization is implemented correctly.
However, there are two significant drawbacks of this approach.

The first one is that the randomization is quite expensive to implement for
non-linear operations as they are used in symmetric ciphers (see for example [5],
[6] and [7]). The second one is that many algorithmic countermeasures do not
provide sufficient protection against higher-order DPA attacks [13] or sophisti-
cated SPA attacks [11,18]. The consequence of these facts is that algorithmic
countermeasures are typically combined with hardware countermeasures [2,8,12,
16,19,20,21].

The hardware approach to counteract DPA attacks differs significantly from
the algorithmic one. The intermediate results that occur during the execution
of a cryptographic algorithm are not affected by this type of countermeasure.
Instead, the goal of this approach is to bury the attackable part of the power
consumption in different kinds of noise.

The more noise there is in the power traces recorded by the attacker, the more
measurements are needed for a successful DPA attack. Although the basic idea
is relatively simple, hardware countermeasures have proven to be quite effective
in practice. This is why cryptographic devices are typically either protected by a
combination of hardware and algorithmic countermeasures or solely by hardware
countermeasures.

The decision which combination of countermeasures is implemented in a de-
vice, is made by the designers. It is their task to choose a combination of coun-
termeasures that provides the resistance against DPA attacks that is necessary
for the planned application of the device. The resistance against DPA attacks is
typically specified by a number of samples: If DPA attacks with this number of
samples fail, the device is resistant enough. Otherwise the requirements are not
fulfilled.

Choosing a suitable combination of countermeasures is a very challenging
task in practice. This is due to the fact that this decision needs to be made
at a very early stage of the design process. Design iterations are costly and
so the fabrication of a physical prototype to test whether a combination of
countermeasures is sufficient or not, should be avoided.

In order to minimize the number of design iterations, methods are necessary
to assess the effect of countermeasures on the number of samples. However, par-
ticularly for hardware countermeasures there are no publications that discuss
such methods. Publications of hardware countermeasures usually just contain
case studies showing that the proposed countermeasure really increases the num-
ber of samples. Yet, such case studies are only of limited use for a designer of a
device who uses a different technology, a different architecture, and potentially
even uses multiple countermeasures simultaneously.

In this article, a statistical approach is pursued to determine the effect of
hardware countermeasures on the number of samples. This approach leads to a

224 S. Mangard

calculation method that allows the determination of lower bounds for the number
of samples needed in DPA attacks. The presented calculation method is based
on only very few parameters that can be assessed already at an early stage of
the design process.

It is therefore ideally suited to help designers to choose the right combination
of countermeasures already at the beginning of the design process. Of course,
the presented calculation method can also be used at any time during the design
process to determine whether a design fulfills certain resistance requirements or
not. The more precisely the parameters of the calculation can be determined,
the more precise becomes the statement on the number of samples.

This article is organized as follows: Section 2 provides a short summary of
the fundamentals of DPA attacks and defines some of the notation that is used
in this article. Section 3 analyzes the principles that are used by hardware coun-
termeasures to increase the resistance against DPA attacks. The calculation of
lower bounds for the number of samples is presented in section 4. In section 5,
the corresponding formulas are empirically verified. Conclusions can be found in
section 6.

2 Differential Power Analysis

The power consumption of a digital circuit depends on the data that the circuit
processes. Thus, the power trace of a device executing a cryptographic algorithm,
depends on intermediate results of this algorithm.

DPA attacks exploit the fact that in all cryptographic algorithms there occur
intermediate results which are a function of the ciphertext and only few key bits.
We call these key bits a subkey. In a DPA attack, one subkey after the other
is attacked until the entire secret key is known or the missing rest of the key
can be efficiently determined by a brute-force search. An attacker knowing the
cryptographic algorithm that is executed in a device, can reveal a subkey as
follows:

First, the power consumption of the device is recorded, while it encrypts
S different plaintexts using the same key. In this article, we use the common
assumption that these plaintexts are uniformly distributed. We refer to the power
traces that are recorded during the encryptions as P1...S,1...T , where T is the
number of points that are recorded per encryption.

In the next step, the attacker chooses an intermediate result of the executed
algorithm that is a function of the ciphertext and a short subkey. Based on the
ciphertext and all possible values for the subkey, hypothetical values for the in-
termediate result are calculated. This leads to a matrix I1...K,1...S of hypothetical
intermediate results, where K is the number of possible values for the subkey.

The subkey kc that is actually used in the attacked device is one of the K
possible values for the subkey. Hence, the values Ikc,1...S have actually been pro-
cessed by the attacked device while it has been doing the S recorded encryptions.
Consequently, the values P1...S,tc depend on Ikc,1...S , where tc is the moment of
time at which the attacked intermediate results have been processed.

Hardware Countermeasures against DPA 225

The attacker determines a hypothetical power consumption value Hk,s for ev-
ery Ik,s. The absolute values of H1...K,1...S are of no importance for the attack—
only the relative distance between the values is relevant.

Nevertheless, the calculation of H1...K,1...S requires some basic knowledge
about how the processing of different data affects the power consumption of a
device. Many devices use pre-charged buses. Such buses cause a power consump-
tion that is proportional to the Hamming weight of the data block that is being
transferred over the bus.

After having determined H1...K,1...S , the attacker reveals the correct subkey
kc by correlating the hypothetical power consumptions with the one of the de-
vice. In this article, the Pearson correlation coefficient is used to measure this
correlation.

In [10], Kocher et. al. measure this correlation by calculating the distance
between means. In the context of DPA attacks, there is no significant difference
between the two measures for the correlation. However, we favor the Pearson
correlation coefficient because there exists a well-established theory on measuring
correlations this way—the Pearson correlation coefficient is the common measure
to determine the linear relationship between two variables. Equation 1 shows a
definition of the correlation ρ between two variables X and Y , where E(X), E(Y)
and E(XY) are expected values, Cov(X, Y) is the covariance and V ar(X) as
well as V ar(Y) are the variances of the variables.

ρ(X, Y) =
E(XY) − E(X)E(Y)

√
V ar(X)V ar(Y)

Cov(X, Y)
√

V ar(X)V ar(Y)
(1)

The definition of the Pearson correlation coefficient r is shown in equation 2.
r estimates the correlation ρ between two variables based on S samples. x̄ and
ȳ in equation 2 denote the means of the variables based on S samples.

r(< x1, . . . , xS >, < y1, . . . , yS >) =
∑S

s=1 (xs − x̄)(ys − ȳ)
√∑S

s=1 (xs − x̄)2
√∑S

s=1 (ys − ȳ)2
(2)

In a DPA attack, the Pearson correlation coefficient between the values
Hk=fixed,1...S and P1...S,t=fixed is calculated for every fixed k and t. This leads to
the matrix R = r1...K,1...T of correlation coefficients. Since the values P1...S,∀t�=tc

and H∀k �=kc,1...S are largely uncorrelated, the correlations ρ∀k �=kc,∀t�=tc are sig-
nificantly lower than ρkc,tc

.
If S is sufficiently large in an attack, this difference between the correlations

can be detected in the matrix R of Pearson correlation coefficients. In this case,
one correlation coefficient of R is significantly larger than all other ones. The
position of this peak in R reveals the correct subkey kc.

The number of samples that is needed in a DPA attack to reveal kc is mainly
determined by the value ρkc,tc . This observation has already been made previ-
ously by Messerges et. al. in [15].

226 S. Mangard

Since ρkc,tc is the maximum value of ρ1...K,1...T , we refer to this correlation
as ρmax throughout the remainder of this article. The higher ρmax is, the less
samples are needed to see a significant peak at the position (kc, tc) of R.

This is why it is the goal of hardware countermeasures to reduce ρmax to a
value that is as close to zero as possible.

3 Hardware Countermeasures

In order to increase the number of samples needed in DPA attacks, hardware
countermeasures decrease the correlation between the hypothetical power con-
sumptions and the power consumption of the device.

The hypothetical power consumptions are determined by the attacker, and
therefore they cannot be controlled by the designers of a device. Yet, designers
can alter the power consumption of their devices in such a way that ρmax is
reduced. There exist two possibilities to lower this correlation. All hardware
countermeasures that have been proposed so far, rely on these two possibilities.

3.1 Reduction of the SNR

The first possibility to reduce the correlation ρmax is to bury the part of the
power consumption that is caused by the processing of the attacked intermediate
result in a lot of noise.

The burying of this signal in noise is best measured by a signal-to-noise ratio
(SNR). For the definition of this SNR, we define Q to be the power consumption
caused by the attacked intermediate result and N to be additive noise. Con-
sequently, the power consumption of a device at the time tc can be written as
Ps,tc = Qs + Ns.

Equation 3 shows the definition of the SNR for the signal Q. Since the DC
components of N and Q are not relevant for the calculation of the correlation,
only the AC components (i.e. the variances) of the signals are considered in this
equation.

SNR =
V ar(Q)
V ar(N)

(3)

The lower the SNR is, the lower is also the correlation between the correct
hypothetical power consumption and the power consumption of the device.

There are several hardware countermeasures that reduce the SNR. The most
prominent examples are special logic styles that minimize the data dependency
of the power consumption. Such logic styles are presented by Moore et. al. in [16,
17], by Tiri et. al. in [20,21] and by Saputra et. al. in [19].

However, there are many more ways to reduce the SNR. For example, also
flattening the power consumption or random charging of on-chip capacitances
reduce the SNR. In fact, any processing that occurs in parallel to the execution
of the cryptographic algorithm, leads to this result.

Hardware Countermeasures against DPA 227

In general, the effect of a hardware countermeasure on the SNR can be de-
termined already at an early stage of the design process. Even before the imple-
mentation of a device has started, it is possible to assess the SNR. During the
implementation phase, the SNR can be determined by using tools that assess
the power consumption of a device. Due to the fact that the overall power con-
sumption of integrated circuits has become increasingly important during the
last few years, several tools of this kind are available.

3.2 Random Disarrangement of tc

The second possibility to reduce the correlation ρmax is to randomly disarrange
the moment of time at which the attacked intermediate result is processed. If
the time tc is different in every power trace, the correlation between the cor-
rect hypothetical power consumption and the one of the device is significantly
reduced.

Random disarrangement techniques lead to the fact that there is a certain
probability distribution for tc. Clearly, the highest correlation in DPA attacks
occurs at the moment of time of the power traces, where the maximum of this
probability distribution is located. We refer to this moment of time as t̂c. The
maximum probability p̂ that is located at t̂c is the decisive value determining
how much the correlation is reduced in DPA attacks. The lower p̂ is, the more
samples are required in DPA attacks.

There exist many proposals for hardware countermeasures that are based on
a random disarrangement of tc. The classic countermeasure that is based on this
principle is the insertion of random delays [3], which can even be implemented in
software. Another approach that is also based randomizing tc is pursued by Irwin
et. al. in [8] and by May et. al. in [12]. They propose to use a non-deterministic
processor to foil DPA attacks.

The countermeasure proposed by Benini et. al. in [2], also gains most of its
strength by randomizing tc. Of course, also asynchronous logic styles [16,17] are
very well suited for the insertion of non-deterministic delays.

In order to determine the effect of a random disarrangement of tc on DPA
attacks early in the design process, it is necessary that p̂ can be determined very
early.

In case of the insertion of random delays, tc is binomially distributed and
so p̂ can be calculated in a straightforward manner. In case of the other coun-
termeasures, the distributions of tc may be more complex. Yet, even if a direct
calculation of p̂ is not practical, it is always possible to approximate it empirically
based on a software model of the countermeasure.

In this section, we have introduced the possibilities that can be used to lower
the correlation ρmax in DPA attacks. There are two properties of (combinations
of) hardware countermeasures that largely determine the effect of the counter-
measures on the number of samples: the SNR defined in equation 3 and p̂.

Both properties can be assessed already at an early stage of the design pro-
cess. The following section introduces the calculation of lower bounds for the
number of samples based on these two parameters.

228 S. Mangard

4 Calculation of Lower Bounds for the Number of
Samples

The effect of hardware countermeasures on the number of samples is largely de-
termined by the two parameters discussed in section 3. However, there are also
some other parameters that have a certain influence of the number of samples.
Throughout this article, these parameters are set to worst-case values from a
designer’s point of view (i.e. all unknown parameters are set in favor of a poten-
tial attacker). Hence, the calculation method introduced in this section, leads
to lower bounds for the number of samples. This conservative measure is ex-
actly what designers should use to determine the effectiveness of the hardware
countermeasures in their design.

In the following subsection, first formulas are derived to calculate ρmax in
the presence of hardware countermeasures. Subsection 4.2 then introduces the
calculation of lower bounds for the number of samples based on ρmax.

4.1 ρmax in the Presence of Hardware Countermeasures

The Effect of SNR on ρmax: In a DPA attack on a device without random
disarrangement of tc, ρmax is the correlation between the hypothetical power
consumption for the correct subkey and the one of the device at the time tc.

Equation 4 shows the calculation of ρmax based on SNR. In this equation, the
variable H refers to the hypothetical power consumption for the correct subkey.
Q and N are used as defined in section 3: Q denotes the power consumption of the
device caused by the attacked intermediate result and N denotes uncorrelated
additive noise.

ρ(H, Q + N) =
E(H(Q + N)) − E(H)E(Q + N)
√

V ar(H)(V ar(Q) + V ar(N))

=
E(HQ + HN) − E(H)(E(Q) + E(N))

√
V ar(H)V ar(Q)

√
1 + V ar(N)

V ar(Q)

=
ρ(H, Q)

√
1 + 1

SNR

(4)

The Effect of p̂ on ρmax: If tc is randomly disarranged, the correlation ρmax

occurs between the correct hypothetical power consumption and the one of the
device at the time t̂c.

In equation 5, the variable P̂ refers to the power consumption of the device
at this time t̂c. The probability that a power consumption at this time is caused
by the processing of an attacked intermediate result is p̂. With a probability of
(1 − p̂), the power consumption at the time tc is caused by the processing of
some other data.

In equation 5, we refer to the power consumption caused by an attacked
intermediate result as P . With O we refer to the one caused by the processing of
other data. In practice, O is largely independent from the correct hypothetical
power consumption H. This is why we set Cov(H, O) to zero in equation 5.

Hardware Countermeasures against DPA 229

ρ(H, P̂) =
p̂ ∗ Cov(H, P) + (1 − p̂) Cov(H, O)

√
V ar(H)V ar(P̂)

=
p̂ ∗ Cov(H, P)

√
V ar(H)V ar(P̂)

= ρ(H, P) ∗ p̂ ∗
√

V ar(P)
V ar(P̂)

(5)

Calculation of ρmax: The equations 4 and 5 can be combined into one formula
(see equation 6) that allows to determine the effect of a given combination of
hardware countermeasures on ρmax.

ρmax =
ρ(H, Q)

√
1 + 1

SNR

∗p̂∗
√

V ar(P)
V ar(P̂)

(6)

Besides the parameters SNR and p̂, also the correlation ρ(H, Q) and the term
F =

√
V ar(P)
V ar(P̂)

influence ρmax. While the correlation ρ(H, Q) solely depends on
how well the attacker knows the power consumption characteristics of a device,
the factor F is a device-specific property.

However, unlike SNR and p̂, F is rather difficult to assess at very early
stages of the design process. In order to reasonably assess F , designers need some
knowledge about how the power consumption of the device looks like before and
after the attacked intermediate result is processed. The range that needs to be
known is the bigger, the wider the probability distribution of tc is.

In practice, F should be set to the worst-case value 1 at the very early stages
of the design process. As soon as first assessments on the power consumption of
the device are available, F can be updated accordingly in the calculation of the
number of samples.

Since designers should always determine the number of samples in a conser-
vative manner, ρ(H, Q) should be set to 1 throughout the design process.

Based on equation 6, ρmax can be determined at any point of the design
process. The better the parameters of this equation can be assessed, the better
becomes the statement on the number of needed samples.

4.2 Mapping ρmax to a Number of Samples

The number of samples needed in a DPA attack is the commonly used measure
for the resistance of a device against these attacks. In order to reveal the correct
subkey kc, the number of samples needs to be increased in an attack until a
significant peak is visible in the matrix R.

The Pearson correlation coefficients in this matrix R estimate the corre-
lations ρ1...K,1...T based on S samples. The sampling distribution of a Pearson
correlation coefficient r is best described by transforming r to a variable z that is

230 S. Mangard

normally distributed. This transformation (known as Fisher’s Z-Transformation)
is shown in the equations 7 to 9.

z =
1
2

ln
1 + r

1 − r
(7)

µ =
1
2

ln
1 + ρ

1 − ρ
(8)

σ2 =
1

S − 3
(9)

Based on these formulas, the sampling distribution of each correlation coef-
ficient r of the matrix R can be determined easily based on ρ1...K,1...T and S.
The equations 7 to 9 are an approximation for S > 30. Yet, since the number of
samples is typically much higher, this approximation is sufficient.

Calculating the exact number of samples that are needed for a DPA attack
is quite difficult in practice. This has several reasons. First of all, the designers
of a cryptographic device don’t know to which sampling rate an attacker will set
the oscilloscope in an attack, and the designers also don’t know how long the
recorded power traces will be. Clearly, these parameters strongly influence the
size and the values of the matrix ρ1...K,1...T .

Even if we would assume the designers knew ρ1...K,1...T , the designers would
still not know the correlation between the values of the matrix ρ1...K,1...T . Yet,
these values are correlated significantly in practice.

In order to calculate a lower bound for the number of samples only based on
ρmax, we use the following observation: The number of samples that is needed
to see a peak in practice, is mainly determined by the distance between the
sampling distributions with ρ = 0 and ρ = ρmax. All values of R are drawn
from one of these two sampling distributions. Clearly, the more overlap there is
between these distributions, the less likely it is to see a significant peak in R.
An attacker can decrease this overlap by increasing the number of samples (see
equation 9).

In order to measure the distance between the distributions, we calculate the
probability that a value drawn from the distribution with ρ = ρmax is bigger
than one that is drawn from the distribution with ρ = 0. This probability α
can be calculated as shown in equation 10. This equation can be transformed to
equation 11, which allows a direct calculation of the number of samples based
on ρmax.

α = Φ




1
2 ln 1+ρmax

1−ρmax
− 1

2 ln 1+0
1−0√

2
S−3



 (10)

S = 3 + 8



 Zα

ln
(

1+ρmax

1−ρmax

)





2

(11)

Hardware Countermeasures against DPA 231

The quantile Zα determines the distance between the distributions with ρ = 0
and ρ = ρmax. The higher the probability α is, the bigger is the distance between
the distributions and, consequently, the more likely it is to see a peak.

In practice, several values are drawn from each of these distributions. Yet,
these values are not drawn independently. Therefore, it is hard to calculate
the exact probability for a peak, and we have to rely on empirical results to
approximate a lower bound for the number of needed samples.

Based on several practical attacks and simulations, we have determined that
α = 0.9 is a reasonable value to calculate a lower bound for the number of
samples needed in a DPA attack. Setting α = 0.9999 in equation 11 on the other
hand, leads to a number of samples that reveals the attacked subkey with very
high probability. Between α = 0.9 and α = 0.9999 there is a “gray area”. The
lower the value of α is, the lower is the probability of observing a significant
peak in the correlation trace rkc,1...T . The levels α = 0.9 and α = 0.9999 have
been chosen in a very conservative way.

In order to get more exact bounds for a particular device, the levels α may be
refined as soon as simulated or measured power traces of the device are available.

Based on the formulas we have provided in this subsection, designers of cryp-
tographic devices can determine the effect of hardware countermeasures on the
number of samples as follows:

First, ρmax is calculated according to equation 6. The parameters needed
for this calculation, are conservatively assessed by the designers as good as it is
possible at the respective stage of the design process. Based on ρmax, a lower
bound for the number of needed samples can then be calculated according to
equation 11.

5 Empirical Verification

In order to empirically verify the formulas derived in the last section, we imple-
mented AES-128 on an 8-bit micro controller. The micro controller was clocked
with 11MHz and its power consumption was sampled with 250 MS/s during 4000
AES-128 encryptions.

We attacked an 8-bit intermediate result of AES-128 at the time it was
transferred over the pre-charged bus of the micro controller. In order to verify
equation 6, a different number of bits of this intermediate result were attacked.
From an attacker’s point of view the bits that are transferred over the bus, but
are not part of the attacked intermediate result, are noise. Of course, there is
also other noise in the measurement, besides the power consumption of these
bits.

However, since we are not familiar with the details of the design of the micro
controller, we had to assume that this noise is zero for our first calculation of
ρmax based on equation 12. In this equation, b is the number of bits that are
attacked on the bus, and n is the variable representing the additional noise in
the power traces.

232 S. Mangard

Table 1. Comparison of calculated correlations with the empirically determined cor-
relation coefficients for 4000 samples

Number of Attacked Bits 1 2 3 4 5 6 7 8

Calculated ρmax (n = 0) 0.35 0.50 0.61 0.71 0.79 0.87 0.94 1.00

Calculated ρmax (n = 2) 0.32 0.45 0.55 0.63 0.71 0.77 0.84 0.89

Measured rmax (4000 samples) 0.31 0.44 0.53 0.63 0.70 0.76 0.82 0.90

ρmax =
1

√
1 + 1

SNR

=
1

√
1 + n+(8−b)

b

(12)

The first line of table 1 shows ρmax for n = 0 and b = 1 . . . 8. In the second
line, the corresponding values are shown for n = 2. The correlation coefficients
we determined empirically by performing a DPA attack with 4000 samples, can
be found in line three.

The values ρmax calculated based on n = 0, are higher than the ones deter-
mined empirically. This is a logical consequence of the fact that no noise was
assumed for the calculation. However, the values in the second and third line
match almost exactly—obviously setting n = 2 models the noise of the micro
controller very well. The slight deviations between the lines two and three are a
consequence of the fact that not all wires of the bus of the micro controller have
the same power consumption characteristics.

Based on the micro controller, we also verified the effect of random delays on
ρmax. For this purpose, we disarranged the 4000 power traces using a binomial
distribution with p = 1

2 and n = 50 clock cycles for the delay—the maximum
probability of this distribution is p = 1

250

(50
25

)
. However, when calculating p̂,

the fact that the micro controller processes the attacked intermediate result
twice needed to be considered. The micro controller we used, processed the
attacked intermediate result in two subsequent clock cycles. Consequently, p̂
was approximated by 2 ∗ 1

250

(50
25

)
. We attacked a 4-bit intermediate result using

the disarranged traces. Consequently, ρmax could be determined as shown in
equation 13.

ρmax ≈ 1
√

1 + 6
4

∗ 2 ∗ 1
250

(
50
25

)
∗

√
47
260

= 0.06 (13)

The quotient 47
260 was determined empirically. Performing 1000 attacks with

different random delays based on 4000 power traces of the micro controller, lead
to mean of rmax = 0.063.

In the next step, we verified the calculation of the number of samples. We
calculated S based on equation 11 for the attacks without random delays which
we described before. The calculated number of samples for α = 0.9 and α =
0.9999 are shown in table 2 (ρmax was calculated using equation 12 with n = 2).
The big difference between the number of samples for the same attack with

Hardware Countermeasures against DPA 233

Table 2. The number of samples needed in a DPA attack on the micro controller for
α = 0.9 and α = 0.9999

Number of Attacked Bits 1 2 3 4 5 6 7 8

S calculated with α = 0.9 34 17 12 9 7 6 5 5

S calculated with α = 0.9999 261 122 76 53 39 29 22 16

different values α, again shows that the levels α = 0.9 and α = 0.9999 have been
chosen very conservatively.

We have performed DPA attacks with the calculated number of samples.
Clearly visible peaks occurred in the attacks conducted with the numbers of
samples calculated based on α = 0.9999. In attacks with the numbers of samples
shown in the first line of table 2, only some sporadic peaks occurred in hundreds
of attacks.

Hence, we have been able to verify empirically all formulas presented in this
article, based on attacks on an 8-bit micro controller.

6 Conclusions

Designers of cryptographic devices require methods to assess the effect of hard-
ware countermeasures on the number of samples needed in DPA attacks. Such
methods are necessary in order to avoid costly design iterations.

In this article, we have identified those properties of hardware countermea-
sures that affect the number of samples needed in DPA attacks. Based on these
properties, we have derived formulas that allow the calculation of lower bounds
for the number of samples needed in DPA attacks.

The presented formulas enable designers to assess the resistance of their de-
vices against DPA attacks from the earliest stages of the design process onwards
until the fabrication. This way designers can verify that the combination of coun-
termeasures they have chosen to implement in their devices, indeed provides the
required protection against DPA attacks.

References

1. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The EM Side-channel(s).
In Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture Notes
in Computer Science (LNCS). Springer-Verlag, 2002.

2. L. Benini, A. Macii, E. Macii, E. Omerbegovic, M. Poncino, and F. Pro. Energy-
Aware Design Techniques for Differential Power Analysis Protection. In 40th De-
sign Automation Conference – DAC 2003. ACM, 2003.

3. C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis in the pres-
ence of Hardware Countermeasures. In Workshop on Cryptographic Hardware and
Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Sci-
ence (LNCS), pages 252–263. Springer-Verlag, 2000.

234 S. Mangard

4. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Workshop on Cryptographic Hardware and Embedded Systems
– CHES 1999, volume 1717 of Lecture Notes in Computer Science (LNCS), pages
292–302. Springer-Verlag, 1999.

5. J. Dj. Golic and C. Tymen. Multiplicative Masking and Power Analysis of AES.
In Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture Notes
in Computer Science (LNCS). Springer-Verlag, 2002.

6. L. Goubin. A Sound Method for Switching between Boolean and Arithmetic Mask-
ing. In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2001, volume 2162 of Lecture Notes in Computer Science (LNCS), pages 3–15.
Springer-Verlag, 2001.

7. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Cryptographic Hardware and Embedded Systems - CHES 1999, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer-Verlag, 1999.

8. J. Irwin, D. Page, and N.P. Smart. Instruction Stream Mutation for Non-
Deterministic Processors. In IEEE International Conference on Application-
Specific Systems, Architectures, and Processors – ASAP 2002, pages 286–295.
IEEE, 2002.

9. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS
and Related Attacks. In Advances in Cryptology – CRYPTO 1996, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag, 1996.

10. P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology – CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science
(LNCS), pages 388–397. Springer-Verlag, 1999.

11. S. Mangard. A Simple Power-Analysis (SPA) Attack on Implementations of the
AES Key Expansion. In Information Security and Cryptology – ICISC 2002, vol-
ume 2587 of Lecture Notes in Computer Science (LNCS), pages 343–358. Springer-
Verlag, 2002.

12. D. May, H.L. Muller, and N.P. Smart. Non-deterministic Processors. In Infor-
mation Security and Privacy – ACISP 2001, volume 2119 of Lecture Notes in
Computer Science (LNCS), pages 115–129. Springer-Verlag, 2001.

13. T.S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant
Software. In Cryptographic Hardware and Embedded Systems – CHES 2000, volume
1965 of Lecture Notes in Computer Science (LNCS), pages 238–251. Springer-
Verlag, 2000.

14. T.S. Messerges, E. A. Dabbish, and R. H. Sloan. Power Analysis Attacks of Mod-
ular Exponentiation in Smartcards. In Cryptographic Hardware and Embedded
Systems – CHES 1999, volume 1717 of Lecture Notes in Computer Science, pages
144–157. Springer-Verlag, 2000.

15. T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Examining Smart-Card Security
under the Threat of Power Analysis Attacks. IEEE Transactions on Computers,
51(5), 2002.

16. S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improv-
ing Smart Card Security using Self-timed Circuits. In Eighth IEEE International
Symposium on Asynchronous Circuits and Systems – Async 2002. IEEE Computer
Society Press, 2002.

17. S. Moore, Ross Anderson, Robert Mullins, and George Taylor. Balanced Self-
Checking Asynchronous Logic for Smart Card Applications. In Microprocessors
and Microsystems Journal, to appear.

Hardware Countermeasures against DPA 235

18. E. Oswald. Enhancing Simple Power-Analysis Attacks on Elliptic Curve Cryptosys-
tems. In Cryptographic Hardware and Embedded Systems – CHES 2002, volume
2523 of Lecture Notes in Computer Science (LNCS), pages 82–97. Springer-Verlag,
2002.

19. H. Saputra, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, R. Brooks, S. Kim, and
W. Zhang. Masking the Energy Behavior of DES Encryption. In Design, Automa-
tion and Test in Europe Conference and Exhibition – DATE 2003, pages 84–89.
IEEE, 2003.

20. K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In 29th European Solid-State Circuits Conference –
ESSCIRC 2002, 2002.

21. K. Tiri and I. Verbauwhede. Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In Cryptographic Hardware
and Embedded Systems – CHES 2003, volume 2779 of Lecture Notes in Computer
Science (LNCS), pages 125–136. Springer-Verlag, 2003.

22. E. Trichina, D. De Seta, and L. Germani. Simplified Adaptive Multiplicative
Masking for AES and its Secure Implementation. In Cryptographic Hardware and
Embedded Systems – CHES 2002, Lecture Notes in Computer Science (LNCS).
Springer-Verlag, 2002.

	Introduction
	Differential Power Analysis
	Hardware Countermeasures
	Reduction of the SNR
	Random Disarrangement of t_c

	Calculation of Lower Bounds for the Number of Samples
	$rho _{max}$ in the Presence of Hardware Countermeasures
	Mapping $rho _{max}$ to a Number of Samples

	Empirical Verification
	Conclusions

